Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 5, Pages 197–218 (Mi fpm1152)  

This article is cited in 2 scientific papers (total in 2 papers)

Theorems on equalization and monomiality in a relatively free Grassmann algebra

L. M. Tsybulya

Moscow State Pedagogical University
Full-text PDF (249 kB) Citations (2)
References:
Abstract: In this paper, we prove theorems on equalization and monomiality, which are essential for developing the structural theory of T-spaces in a relatively free algebra $k\langle1,x_1,\dots,x_i,\dots\rangle/([[x_1,x_2],x_3])^T$ over an infinite field $k$ of characteristic $p>2$. Additionally, some specifics of the case $p=2$ are considered.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 163, Issue 6, Pages 759–773
DOI: https://doi.org/10.1007/s10958-009-9714-6
Bibliographic databases:
UDC: 512.552
Language: Russian
Citation: L. M. Tsybulya, “Theorems on equalization and monomiality in a relatively free Grassmann algebra”, Fundam. Prikl. Mat., 14:5 (2008), 197–218; J. Math. Sci., 163:6 (2009), 759–773
Citation in format AMSBIB
\Bibitem{Tsy08}
\by L.~M.~Tsybulya
\paper Theorems on equalization and monomiality in a~relatively free Grassmann algebra
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 5
\pages 197--218
\mathnet{http://mi.mathnet.ru/fpm1152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2533589}
\elib{https://elibrary.ru/item.asp?id=12174997}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 163
\issue 6
\pages 759--773
\crossref{https://doi.org/10.1007/s10958-009-9714-6}
\elib{https://elibrary.ru/item.asp?id=15303843}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-73249122008}
Linking options:
  • https://www.mathnet.ru/eng/fpm1152
  • https://www.mathnet.ru/eng/fpm/v14/i5/p197
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :99
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024