|
Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 5, Pages 85–92
(Mi fpm1142)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
On quasiorder lattices and topology lattices of algebras
A. V. Kartashova Volgograd State Pedagogical University
Abstract:
In this paper, it is shown that the dual $\widetilde{\mathrm{Qord}}\,\mathfrak A$ of the quasiorder lattice of any algebra $\mathfrak A$ is isomorphic to a sublattice of the topology lattice $\Im(\mathfrak A)$. Further, if $\mathfrak A$ is a finite algebra, then $\widetilde{\mathrm{Qord}}\,\mathfrak A\cong\Im(\mathfrak A)$. We give a sufficient condition for the lattices $\widetilde{\mathrm{Con}}\,\mathfrak A$, $\widetilde{\mathrm{Qord}}\,\mathfrak A$, and $\Im(\mathfrak A)$ to be pairwise isomorphic. These results are applied to investigate topology lattices and quasiorder lattices of unary algebras.
Citation:
A. V. Kartashova, “On quasiorder lattices and topology lattices of algebras”, Fundam. Prikl. Mat., 14:5 (2008), 85–92; J. Math. Sci., 163:6 (2009), 682–687
Linking options:
https://www.mathnet.ru/eng/fpm1142 https://www.mathnet.ru/eng/fpm/v14/i5/p85
|
Statistics & downloads: |
Abstract page: | 526 | Full-text PDF : | 139 | References: | 49 |
|