|
Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 4, Pages 1111–1114
(Mi fpm114)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short communications
On the structure of the special linear groups over Laurent polynomial rings
V. I. Kopeiko Kalmyckia State University
Abstract:
In this note we prove the following result. Let $C$ be a regular ring such that $\mathrm{SK}(C)=0$. Then the groups $SL_r\bigl(C\bigl[[T_1,\ldots,T_m]\bigr]
\left[X_1^{\pm1},\ldots,X_n^{\pm 1},Y_1,\ldots,Y_s\right]\bigr)$ are generated by elementary matrices for all integers $r\geq\max(3,\dim C+2)$.
Received: 01.01.1995
Citation:
V. I. Kopeiko, “On the structure of the special linear groups over Laurent polynomial rings”, Fundam. Prikl. Mat., 1:4 (1995), 1111–1114
Linking options:
https://www.mathnet.ru/eng/fpm114 https://www.mathnet.ru/eng/fpm/v1/i4/p1111
|
|