Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 4, Pages 231–268 (Mi fpm1137)  

This article is cited in 4 scientific papers (total in 4 papers)

Matrices with different Gondran–Minoux and determinantal ranks over $\mathrm{max}$-algebras

Ya. N. Shitov

M. V. Lomonosov Moscow State University
Full-text PDF (342 kB) Citations (4)
References:
Abstract: Let $\mathrm{GMr}(A)$ be the row Gondran–Minoux rank of a matrix, $\mathrm{GMc}(A)$ be the column Gondran–Minoux rank, and $\mathrm d(A)$ be the determinantal rank, respectively. The following problem was posed by M. Akian, S. Gaubert, and A. Guterman: Find the minimal numbers $m$ and $n$ such that there exists an $(m\times n)$-matrix $B$ with different row and column Gondran–Minoux ranks. We prove that in the case $\mathrm{GMr}(B)>\mathrm{GMc}(B)$ the minimal $m$ and $n$ are equal to 5 and 6, respectively, and in the case $\mathrm{GMc}(B)>\mathrm{GMr}(B)$ the numbers $m=6$ and $n=5$ are minimal. An example of a matrix $A\in\mathcal M_{5\times6}(\mathbb R_\mathrm{max})$ such that $\mathrm{GMr}(A)=\mathrm{GMc}(A^\mathrm t)=5$ and $\mathrm{GMc}(A)=\mathrm{GMr}(A^\mathrm t)=4$ is provided. It is proved that $p=5$ and $q=6$ are the minimal numbers such that there exists an $(p\times q)$-matrix with different row Gondran–Minoux and determinantal ranks.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 163, Issue 5, Pages 598–624
DOI: https://doi.org/10.1007/s10958-009-9698-2
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: Ya. N. Shitov, “Matrices with different Gondran–Minoux and determinantal ranks over $\mathrm{max}$-algebras”, Fundam. Prikl. Mat., 14:4 (2008), 231–268; J. Math. Sci., 163:5 (2009), 598–624
Citation in format AMSBIB
\Bibitem{Shi08}
\by Ya.~N.~Shitov
\paper Matrices with different Gondran--Minoux and determinantal ranks over $\mathrm{max}$-algebras
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 4
\pages 231--268
\mathnet{http://mi.mathnet.ru/fpm1137}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2482045}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 163
\issue 5
\pages 598--624
\crossref{https://doi.org/10.1007/s10958-009-9698-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70649091041}
Linking options:
  • https://www.mathnet.ru/eng/fpm1137
  • https://www.mathnet.ru/eng/fpm/v14/i4/p231
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024