|
Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 4, Pages 227–229
(Mi fpm1136)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Bezout modules and rings
A. A. Tuganbaev Russian State University of Trade and Economics
Abstract:
For any ring $A$, there exist a Bezout ring $R$ and an idempotent $e\in R$ with $A\cong eRe$. Every module over any ring is a direct summand of an endo-Bezout module. Over any ring, every free module of infinite rank is an endo-Bezout module.
Citation:
A. A. Tuganbaev, “Bezout modules and rings”, Fundam. Prikl. Mat., 14:4 (2008), 227–229; J. Math. Sci., 163:5 (2009), 596–597
Linking options:
https://www.mathnet.ru/eng/fpm1136 https://www.mathnet.ru/eng/fpm/v14/i4/p227
|
|