|
Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 4, Pages 181–192
(Mi fpm1133)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Pseudogeometries with clusters and an example of a recursive $[4,2,3]_{42}$-code
V. T. Markov, A. A. Nechaev, S. Skazhenik, E. O. Tveritinov M. V. Lomonosov Moscow State University
Abstract:
In 1998, E. Couselo, S. Gonzalez, V. Markov, and A. Nechaev defined the recursive codes and obtained some results that allowed one to conjecture the existence of recursive MDS-codes of dimension 2 and length 4 over any finite alphabet of cardinality $q\notin\{2,6\}$. This conjecture remained open only for $q\in\{14,18,26,42\}$. It is shown in this paper that there exist such codes for $q=42$. We used a new construction, that of pseudogeometry with clusters.
Citation:
V. T. Markov, A. A. Nechaev, S. Skazhenik, E. O. Tveritinov, “Pseudogeometries with clusters and an example of a recursive $[4,2,3]_{42}$-code”, Fundam. Prikl. Mat., 14:4 (2008), 181–192; J. Math. Sci., 163:5 (2009), 563–571
Linking options:
https://www.mathnet.ru/eng/fpm1133 https://www.mathnet.ru/eng/fpm/v14/i4/p181
|
|