Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 4, Pages 167–180 (Mi fpm1132)  

This article is cited in 3 scientific papers (total in 3 papers)

Dimension polynomials of intermediate differential fields and the strength of a system of differential equations with group action

A. B. Levin

The Catholic University of America
Full-text PDF (195 kB) Citations (3)
References:
Abstract: Let $K$ be a differential field of zero characteristic with a basic set of derivations $\Delta=\{\delta_1,\dots,\delta_m\}$ and let $\Theta$ denote the free commutative semigroup of all elements of the form $\theta=\delta_1^{k_1}\dots\delta_m^{k_m}$ where $k_i\in\mathbb N$ ($1\leq i\leq m$). Let the order of such an element be defined as $\operatorname{ord}\theta=\sum_{i=1}^mk_i$, and for any $r\in\mathbb N$, let $\Theta(r) = \{\theta\in\Theta\mid\operatorname{ord}\theta\leq r\}$. Let $L=K\langle\eta_1,\dots,\eta_s\rangle$ be a differential field extension of $K$ generated by a finite set $\eta=\{\eta_1,\dots,\eta_s\}$ and let $F$ be an intermediate differential field of the extension $L/K$. Furthermore, for any $r\in\mathbb N$, let $L_r=K\Bigl(\bigcup_{i=1}^s\Theta(r)\eta_i\Bigr)$ and $F_r=L_r\cap F$.
We prove the existence and describe some properties of a polynomial $\varphi_{K,F,\eta}(t)\in\mathbb Q[t]$ such that $\varphi_{K,F,\eta}(r)=\operatorname{trdeg}_KF_r$ for all sufficiently large $r\in\mathbb N$. This result implies the existence of a dimension polynomial that describes the strength of a system of differential equations with group action in the sense of A. Einstein. We shall also present a more general result, a theorem on a multivariate dimension polynomial associated with an intermediate differential field $F$ and partitions of the basic set $\Delta$.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 163, Issue 5, Pages 554–562
DOI: https://doi.org/10.1007/s10958-009-9693-7
Bibliographic databases:
UDC: 512.628
Language: Russian
Citation: A. B. Levin, “Dimension polynomials of intermediate differential fields and the strength of a system of differential equations with group action”, Fundam. Prikl. Mat., 14:4 (2008), 167–180; J. Math. Sci., 163:5 (2009), 554–562
Citation in format AMSBIB
\Bibitem{Lev08}
\by A.~B.~Levin
\paper Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 4
\pages 167--180
\mathnet{http://mi.mathnet.ru/fpm1132}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2482040}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 163
\issue 5
\pages 554--562
\crossref{https://doi.org/10.1007/s10958-009-9693-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70649083955}
Linking options:
  • https://www.mathnet.ru/eng/fpm1132
  • https://www.mathnet.ru/eng/fpm/v14/i4/p167
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :125
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024