|
Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 2, Pages 207–221
(Mi fpm1120)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Rings without infinite sets of noncentral orthogonal idempotents
A. A. Tuganbaev Russian State University of Trade and Economics
Abstract:
Let $A$ be a ring without infinite sets of noncentral orthogonal idempotents. $A$ is an exchange ring if and only if all Pierce stalks of $A$ are semiperfect rings. All $A$-modules are $I_0$-modules if and only if either $A$ is a right semi-Artinian ring in which every proper right ideal is the intersection of maximal right ideals or $A/\operatorname{SI}(A_A)$ is an Artinian serial ring such that the square of the Jacobson radical of $A/\operatorname{SI}(A_A)$ is equal to zero.
Citation:
A. A. Tuganbaev, “Rings without infinite sets of noncentral orthogonal idempotents”, Fundam. Prikl. Mat., 14:2 (2008), 207–221; J. Math. Sci., 162:5 (2009), 730–739
Linking options:
https://www.mathnet.ru/eng/fpm1120 https://www.mathnet.ru/eng/fpm/v14/i2/p207
|
|