|
Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 4, Pages 1101–1105
(Mi fpm112)
|
|
|
|
Short communications
Generalized identities with invertible variables for subrings of artinian rings
I. Z. Golubchik Bashkir State Pedagogical University
Abstract:
Let $R$ be a prime subring with 1 of the matrix ring $D_k$ over a skew field $D$, $k\geq1$. Suppose that the center $C$ of $R$ is infinite and elements of $C$ belong to the center of $D_k$. Let $G$ be an elementary absolute irreducible subgroup of the group $U(R)$ of invertible elements of $R$ with a nonzero generalized identity with invertible variables $f\in R\langle X,X^{-1}\rangle$, then $R$ is a $PI$-ring.
Received: 01.04.1995
Citation:
I. Z. Golubchik, “Generalized identities with invertible variables for subrings of artinian rings”, Fundam. Prikl. Mat., 1:4 (1995), 1101–1105
Linking options:
https://www.mathnet.ru/eng/fpm112 https://www.mathnet.ru/eng/fpm/v1/i4/p1101
|
|