Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 2, Pages 129–177 (Mi fpm1118)  

This article is cited in 12 scientific papers (total in 12 papers)

Parallel displacements on the surface of a projective space

K. V. Polyakova

Immanuel Kant State University of Russia
References:
Abstract: The paper is devoted to studies of parallel displacements of directions and planes in linear and nonlinear (in narrow sense) connections along lines on a surface of a projective space considered as the point manifold and the manifold of tangential planes. Parallel displacements are described by means of covariant differentials of quasitensors in the case of nonlinear connections and projective-covariant differentials in linear connections. The work concerns to researches in the area of differential geometry. The research is based on an application of the G. F. Laptev's method of defining a connection in a principal fiber bundle and his method of continuations and scopes, which generalizes the moving frame method and the Cartan's method of exterior forms; the research depends on calculation of exterior differential forms.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 162, Issue 5, Pages 675–709
DOI: https://doi.org/10.1007/s10958-009-9654-1
Bibliographic databases:
UDC: 514.7
Language: Russian
Citation: K. V. Polyakova, “Parallel displacements on the surface of a projective space”, Fundam. Prikl. Mat., 14:2 (2008), 129–177; J. Math. Sci., 162:5 (2009), 675–709
Citation in format AMSBIB
\Bibitem{Pol08}
\by K.~V.~Polyakova
\paper Parallel displacements on the surface of a~projective space
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 2
\pages 129--177
\mathnet{http://mi.mathnet.ru/fpm1118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2475599}
\zmath{https://zbmath.org/?q=an:1182.53010}
\elib{https://elibrary.ru/item.asp?id=12197923}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 162
\issue 5
\pages 675--709
\crossref{https://doi.org/10.1007/s10958-009-9654-1}
\elib{https://elibrary.ru/item.asp?id=15303612}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350648329}
Linking options:
  • https://www.mathnet.ru/eng/fpm1118
  • https://www.mathnet.ru/eng/fpm/v14/i2/p129
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :141
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024