Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 2, Pages 3–12 (Mi fpm1111)  

This article is cited in 6 scientific papers (total in 6 papers)

Rings over which all modules are $I_0$-modules. II

A. N. Abyzova, A. A. Tuganbaevb

a Kazan State University
b Russian State University of Trade and Economics
Full-text PDF (136 kB) Citations (6)
References:
Abstract: All right $R$-modules are $I_0$-modules if and only if either $R$ is a right SV-ring or $R/I^{(2)}(R)$ is an Artinian serial ring such that the square of the Jacobson radical of $R/I^{(2)}(R)$ is equal to zero.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 162, Issue 5, Pages 587–593
DOI: https://doi.org/10.1007/s10958-009-9647-0
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: A. N. Abyzov, A. A. Tuganbaev, “Rings over which all modules are $I_0$-modules. II”, Fundam. Prikl. Mat., 14:2 (2008), 3–12; J. Math. Sci., 162:5 (2009), 587–593
Citation in format AMSBIB
\Bibitem{AbyTug08}
\by A.~N.~Abyzov, A.~A.~Tuganbaev
\paper Rings over which all modules are $I_0$-modules.~II
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 2
\pages 3--12
\mathnet{http://mi.mathnet.ru/fpm1111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2475592}
\zmath{https://zbmath.org/?q=an:1185.16005}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 162
\issue 5
\pages 587--593
\crossref{https://doi.org/10.1007/s10958-009-9647-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350628956}
Linking options:
  • https://www.mathnet.ru/eng/fpm1111
  • https://www.mathnet.ru/eng/fpm/v14/i2/p3
    Cycle of papers
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024