|
Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 2, Pages 3–12
(Mi fpm1111)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Rings over which all modules are $I_0$-modules. II
A. N. Abyzova, A. A. Tuganbaevb a Kazan State University
b Russian State University of Trade and Economics
Abstract:
All right $R$-modules are $I_0$-modules if and only if either $R$ is a right SV-ring or $R/I^{(2)}(R)$ is an Artinian serial ring such that the square of the Jacobson radical of $R/I^{(2)}(R)$ is equal to zero.
Citation:
A. N. Abyzov, A. A. Tuganbaev, “Rings over which all modules are $I_0$-modules. II”, Fundam. Prikl. Mat., 14:2 (2008), 3–12; J. Math. Sci., 162:5 (2009), 587–593
Linking options:
https://www.mathnet.ru/eng/fpm1111 https://www.mathnet.ru/eng/fpm/v14/i2/p3
|
|