Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 4, Pages 1129–1132 (Mi fpm111)  

Short communications

Two-dimensional real triangle quasirepresentations of groups

V. A. Faiziev
References:
Abstract: Definition. By two-dimensional real triangle quasirepresentation of group $G$ we mean the mapping $\Phi$ of group $G$ into the group of two-dimensional real triangle matrices $T(2,R)$ such that if
$$ \Phi (x)=\begin{pmatrix} \alpha(x) &\varphi(x) \\ 0 &\sigma(x) \end{pmatrix}, $$
then: \begin{tabular}[t]{l} 1) $\alpha,\,\sigma$ are homomorphisms of group $G$ into $R^*$;
2) the set $\big\{\|\Phi(xy)-\Phi(x)\Phi(y)\|;\,x,y\in G\big\}$ is bounded. \end{tabular}
For brevity we shall call such mapping a quasirepresentation or a $(\alpha,\sigma)$-quasirepresentation for given diagonal matrix elements $\alpha$ and $\sigma$. We shall say that quasirepresentation is nontrivial if it is neither representation nor bounded. In this paper the criterion of existence of nontrivial $(\alpha,\sigma)$-quasirepresentation on groups is established. It is shown that if $G=A\ast B$ is the free product of finite nontrivial groups $A$ and $B$ and $A$ or $B$ has more than two elements then for every homomorphism $\alpha$ of group $G$ into $R^*$ there are $(\alpha,\varepsilon)$-, $(\varepsilon,\alpha)$- and $(\alpha,\alpha)$-quasirepresentation. Here the homomorphism $\varepsilon$ maps $G$ into 1.
Received: 01.05.1995
Bibliographic databases:
Document Type: Article
UDC: 519.46
Language: Russian
Citation: V. A. Faiziev, “Two-dimensional real triangle quasirepresentations of groups”, Fundam. Prikl. Mat., 1:4 (1995), 1129–1132
Citation in format AMSBIB
\Bibitem{Fai95}
\by V.~A.~Faiziev
\paper Two-dimensional real triangle quasirepresentations of groups
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 4
\pages 1129--1132
\mathnet{http://mi.mathnet.ru/fpm111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1791800}
\zmath{https://zbmath.org/?q=an:0867.20007}
Linking options:
  • https://www.mathnet.ru/eng/fpm111
  • https://www.mathnet.ru/eng/fpm/v1/i4/p1129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024