Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 8, Pages 193–212 (Mi fpm1107)  

This article is cited in 3 scientific papers (total in 3 papers)

On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers

A. E. Troitskaya

M. V. Lomonosov Moscow State University
Full-text PDF (222 kB) Citations (3)
References:
Abstract: Assume that $\Delta$ and $\Pi$ are representations of the group $\mathbb Z^2$ by operators on the space $L_2(X,\mu)$ that are induced by measure-preserving automorphisms, and for some $d$, the representations $\Delta^{\otimes d}$ and $\Pi^{\otimes d}$ are conjugate to each other, $\Delta\bigl(\mathbb Z^2\setminus(0,0)\bigr)$ consists of weakly mixing operators, and there is a weak limit (over some subsequence in $\mathbb Z^2$ of operators from $\Delta(\mathbb Z^2)$) which is equal to a nontrivial, convex linear combination of elements of $\Delta(\mathbb Z^2)$ and of the projection onto constant functions. We prove that in this case, $\Delta$ and $\Pi$ are also conjugate to each other.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 159, Issue 6, Pages 879–893
DOI: https://doi.org/10.1007/s10958-009-9478-z
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. E. Troitskaya, “On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers”, Fundam. Prikl. Mat., 13:8 (2007), 193–212; J. Math. Sci., 159:6 (2009), 879–893
Citation in format AMSBIB
\Bibitem{Tro07}
\by A.~E.~Troitskaya
\paper On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 8
\pages 193--212
\mathnet{http://mi.mathnet.ru/fpm1107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2475589}
\zmath{https://zbmath.org/?q=an:05659102}
\elib{https://elibrary.ru/item.asp?id=11162719}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 159
\issue 6
\pages 879--893
\crossref{https://doi.org/10.1007/s10958-009-9478-z}
\elib{https://elibrary.ru/item.asp?id=13611287}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349198135}
Linking options:
  • https://www.mathnet.ru/eng/fpm1107
  • https://www.mathnet.ru/eng/fpm/v13/i8/p193
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :87
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024