Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 1, Pages 189–197 (Mi fpm11)  

Gage-equivalent forms of the Schrödinger equation for a hydrogenlike atom in a nonstationary electric field

Yu. V. Popov, K. A. Kouzakov

M. V. Lomonosov Moscow State University
References:
Abstract: Some gage-equivalent forms (including the new ones) of the time-dependent Schrödinger equation for a hydrogenlike atom in a nonstationary electric field of a laser pulse are presented. These forms allow one to develop a perturbation theory for both small and rather large intensities of the electromagnetic field.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 4, Pages 578–583
DOI: https://doi.org/10.1007/s10958-008-9076-5
Bibliographic databases:
UDC: 517.912
Language: Russian
Citation: Yu. V. Popov, K. A. Kouzakov, “Gage-equivalent forms of the Schrödinger equation for a hydrogenlike atom in a nonstationary electric field”, Fundam. Prikl. Mat., 13:1 (2007), 189–197; J. Math. Sci., 152:4 (2008), 578–583
Citation in format AMSBIB
\Bibitem{PopKou07}
\by Yu.~V.~Popov, K.~A.~Kouzakov
\paper Gage-equivalent forms of the Schr\"odinger equation for a~hydrogenlike atom in a~nonstationary electric field
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 1
\pages 189--197
\mathnet{http://mi.mathnet.ru/fpm11}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2322966}
\zmath{https://zbmath.org/?q=an:1180.81158}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 4
\pages 578--583
\crossref{https://doi.org/10.1007/s10958-008-9076-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51749087044}
Linking options:
  • https://www.mathnet.ru/eng/fpm11
  • https://www.mathnet.ru/eng/fpm/v13/i1/p189
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025