Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 8, Pages 3–15 (Mi fpm1097)  

This article is cited in 1 scientific paper (total in 1 paper)

Geometric approach to stable homotopy groups of spheres. The Adams–Hopf invariants

P. M. Akhmet'ev

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (176 kB) Citations (1)
References:
Abstract: In this paper, a geometric approach to stable homotopy groups of spheres based on the Pontryagin–Thom construction is proposed. From this approach, a new proof of Hopf invariant one theorem of J. F. Adams for all dimensions except 15, 31, 63, and 127 is obtained. It is proved that for $n>127$, in stable homotopy group of spheres $\Pi_n$, there is no elements with Hopf invariant one. The new proof is based on geometric topology methods. The Pontryagin–Thom theorem (in the form proposed by R. Wells) about the representation of stable homotopy groups of the real, projective, infinite-dimensional space (these groups are mapped onto 2-components of stable homotopy groups of spheres by the Kahn–Priddy theorem) by cobordism classes of immersions of codimension 1 of closed manifolds (generally speaking, nonoriented) is considered. The Hopf invariant is expressed as a characteristic class of the dihedral group for the self-intersection manifold of an immersed codimension 1 manifold that represents the given element in the stable homotopy group. In the new proof, the geometric control principle (by M. Gromov) for immersions in the given regular homotopy classes based on the Smale–Hirsh immersion theorem is required.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 159, Issue 6, Pages 753–760
DOI: https://doi.org/10.1007/s10958-009-9467-2
Bibliographic databases:
UDC: 515.164
Language: Russian
Citation: P. M. Akhmet'ev, “Geometric approach to stable homotopy groups of spheres. The Adams–Hopf invariants”, Fundam. Prikl. Mat., 13:8 (2007), 3–15; J. Math. Sci., 159:6 (2009), 753–760
Citation in format AMSBIB
\Bibitem{Akh07}
\by P.~M.~Akhmet'ev
\paper Geometric approach to stable homotopy groups of spheres. The Adams--Hopf invariants
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 8
\pages 3--15
\mathnet{http://mi.mathnet.ru/fpm1097}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2475578}
\zmath{https://zbmath.org/?q=an:1182.55012}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 159
\issue 6
\pages 753--760
\crossref{https://doi.org/10.1007/s10958-009-9467-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349176713}
Linking options:
  • https://www.mathnet.ru/eng/fpm1097
  • https://www.mathnet.ru/eng/fpm/v13/i8/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:538
    Full-text PDF :177
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024