|
Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 5, Pages 193–200
(Mi fpm1080)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Rings over which all modules are $I_0$-modules
A. A. Tuganbaev Russian State University of Trade and Economics
Abstract:
Let $A$ be a ring that does not contain an infinite set of idempotents that are orthogonal modulo the ideal $\operatorname{SI}(A_A)$. It is proved that all $A$-modules are $I_0$-modules if and only if either $A$ is a right semi-Artinian right V-ring or $A/\operatorname{SI}(A_A)$ is an Artinian serial ring and the square of the Jacobson radical of $A/\operatorname{SI}(A_A)$ is equal to zero.
Citation:
A. A. Tuganbaev, “Rings over which all modules are $I_0$-modules”, Fundam. Prikl. Mat., 13:5 (2007), 193–200; J. Math. Sci., 156:2 (2009), 336–341
Linking options:
https://www.mathnet.ru/eng/fpm1080 https://www.mathnet.ru/eng/fpm/v13/i5/p193
|
Statistics & downloads: |
Abstract page: | 381 | Full-text PDF : | 127 | References: | 72 | First page: | 1 |
|