Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 5, Pages 193–200 (Mi fpm1080)  

This article is cited in 7 scientific papers (total in 7 papers)

Rings over which all modules are $I_0$-modules

A. A. Tuganbaev

Russian State University of Trade and Economics
Full-text PDF (122 kB) Citations (7)
References:
Abstract: Let $A$ be a ring that does not contain an infinite set of idempotents that are orthogonal modulo the ideal $\operatorname{SI}(A_A)$. It is proved that all $A$-modules are $I_0$-modules if and only if either $A$ is a right semi-Artinian right V-ring or $A/\operatorname{SI}(A_A)$ is an Artinian serial ring and the square of the Jacobson radical of $A/\operatorname{SI}(A_A)$ is equal to zero.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 156, Issue 2, Pages 336–341
DOI: https://doi.org/10.1007/s10958-008-9270-5
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: A. A. Tuganbaev, “Rings over which all modules are $I_0$-modules”, Fundam. Prikl. Mat., 13:5 (2007), 193–200; J. Math. Sci., 156:2 (2009), 336–341
Citation in format AMSBIB
\Bibitem{Tug07}
\by A.~A.~Tuganbaev
\paper Rings over which all modules are $I_0$-modules
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 5
\pages 193--200
\mathnet{http://mi.mathnet.ru/fpm1080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2379746}
\zmath{https://zbmath.org/?q=an:1182.16002}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 156
\issue 2
\pages 336--341
\crossref{https://doi.org/10.1007/s10958-008-9270-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58149516317}
Linking options:
  • https://www.mathnet.ru/eng/fpm1080
  • https://www.mathnet.ru/eng/fpm/v13/i5/p193
    Cycle of papers
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:381
    Full-text PDF :127
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024