Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 4, Pages 1095–1099 (Mi fpm108)  

Short communications

A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators

G. M. Brodskii

P. G. Demidov Yaroslavl State University
References:
Abstract: It is shown that the Morita equivalence of rings has a dualization different from the Morita duality. We consider applications of the developed duality theory to studying endomorphism rings of finitely cogenerated injective cogenerators.
Received: 01.08.1995
Bibliographic databases:
Document Type: Article
UDC: 512.552+512.553
Language: Russian
Citation: G. M. Brodskii, “A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators”, Fundam. Prikl. Mat., 1:4 (1995), 1095–1099
Citation in format AMSBIB
\Bibitem{Bro95}
\by G.~M.~Brodskii
\paper A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 4
\pages 1095--1099
\mathnet{http://mi.mathnet.ru/fpm108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1791793}
\zmath{https://zbmath.org/?q=an:0867.16003}
Linking options:
  • https://www.mathnet.ru/eng/fpm108
  • https://www.mathnet.ru/eng/fpm/v1/i4/p1095
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024