Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 4, Pages 1085–1089 (Mi fpm106)  

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

Classification of weakly Noetherian monomial algebras

A. Ya. Belov

House of scientific and technical work of youth
Full-text PDF (239 kB) Citations (1)
References:
Abstract: We describe weakly Noetherian (i.e. satisfying the ascending chain condition on two-sided ideals) monomial algebras as follows. Let $A$ be a weakly Noetherian monomial algebra. Then there exists a Noetherian set of (super-)words $\mathcal U$ such that every non-zero word in $A$ is a subword of a word belonging to $\mathcal U$. A finite set of words or superwords $\mathcal U$ is said to be Noetherian, if every element of $\mathcal U$ is either a finite word or a product of a finite word and one or two uniformly-recurring superwords (in the last case one of these superwords is infinite to the left and the other one to the right).
Received: 01.05.1995
Bibliographic databases:
Document Type: Article
UDC: 512.552.4+512.554.32+512.664.2
Language: Russian
Citation: A. Ya. Belov, “Classification of weakly Noetherian monomial algebras”, Fundam. Prikl. Mat., 1:4 (1995), 1085–1089
Citation in format AMSBIB
\Bibitem{Bel95}
\by A.~Ya.~Belov
\paper Classification of weakly Noetherian monomial algebras
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 4
\pages 1085--1089
\mathnet{http://mi.mathnet.ru/fpm106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1791631}
\zmath{https://zbmath.org/?q=an:0868.16015}
Linking options:
  • https://www.mathnet.ru/eng/fpm106
  • https://www.mathnet.ru/eng/fpm/v1/i4/p1085
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024