Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 3, Pages 753–766 (Mi fpm101)  

This article is cited in 1 scientific paper (total in 1 paper)

On Jackson inequality in $L_p(\mathbb T^d)$

A. V. Rozhdestvenskii
Full-text PDF (463 kB) Citations (1)
References:
Abstract: The author proved some necessary and sufficient conditions on a finite set of $d$–dimensional vectors $\{\alpha_l\}$, when Jackson–Youdin inequality for the approximation of periodic function $f$ by trigonometric polynomials:
$$ E_{n-1}(f)_q\le A\cdot n^{-r +(d/p-d/q)_+}\cdot \max\limits_{l}\|\Delta_{2\pi\alpha_l/n}^m f^{(r)}\|_p, $$
where $A>0$ is independent of $f$ and $n$, holds. A criterion of solvability of the homological equation
$$ f(x)-\frac{1}{(2\pi)^d}\int f(t)dt=\varphi(x+2\pi\alpha)-\varphi(x)\qquada.e.\ x $$
on the sets of functions $\{f\colon\ f^{(r)}\in L_p(\mathbb T^d)\}$ is obtained.
Received: 01.02.1995
Bibliographic databases:
Language: Russian
Citation: A. V. Rozhdestvenskii, “On Jackson inequality in $L_p(\mathbb T^d)$”, Fundam. Prikl. Mat., 1:3 (1995), 753–766
Citation in format AMSBIB
\Bibitem{Roz95}
\by A.~V.~Rozhdestvenskii
\paper On Jackson inequality in $L_p(\mathbb T^d)$
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 3
\pages 753--766
\mathnet{http://mi.mathnet.ru/fpm101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1788554}
\zmath{https://zbmath.org/?q=an:0865.42002}
Linking options:
  • https://www.mathnet.ru/eng/fpm101
  • https://www.mathnet.ru/eng/fpm/v1/i3/p753
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :120
    References:66
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024