Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 7, Pages 129–139 (Mi fpm1009)  

This article is cited in 2 scientific papers (total in 2 papers)

Hamiltonian theory of anyons in crystals

L. Martina

Lecce University
Full-text PDF (146 kB) Citations (2)
References:
Abstract: Semiclassical wave packets for electrons in crystals, subject to external electromagnetic field, satisfy Hamiltonian equations. In $(2+1)$-dimensions and in the limit of uniform fields, the symmetry group results a two-folded Galilei algebra, incorporating an “exotic” central charge. It has the physical meaning of the Berry-phase curvature. In the Hamiltonian scheme, we discuss possible deformations of that algebra and the physical meaning.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 151, Issue 4, Pages 3159–3166
DOI: https://doi.org/10.1007/s10958-008-9025-3
Bibliographic databases:
UDC: 517.957
Language: Russian
Citation: L. Martina, “Hamiltonian theory of anyons in crystals”, Fundam. Prikl. Mat., 12:7 (2006), 129–139; J. Math. Sci., 151:4 (2008), 3159–3166
Citation in format AMSBIB
\Bibitem{Mar06}
\by L.~Martina
\paper Hamiltonian theory of anyons in crystals
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 7
\pages 129--139
\mathnet{http://mi.mathnet.ru/fpm1009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314014}
\zmath{https://zbmath.org/?q=an:1180.81065}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 151
\issue 4
\pages 3159--3166
\crossref{https://doi.org/10.1007/s10958-008-9025-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49349109135}
Linking options:
  • https://www.mathnet.ru/eng/fpm1009
  • https://www.mathnet.ru/eng/fpm/v12/i7/p129
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :100
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024