Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 7, Pages 35–63 (Mi fpm1004)  

This article is cited in 6 scientific papers (total in 6 papers)

Multi-component vortex solutions in symmetric coupled nonlinear Schrödinger equations

A. S. Desyatnikova, D. E. Pelinovskyb, J. Yangc

a Australian National University
b McMaster University
c University of Vermont
References:
Abstract: A Hamiltonian system of incoherently coupled nonlinear Schrödinger equations is considered in the context of physical experiments in photorefractive crystals and Bose–Einstein condensates. Due to the incoherent coupling, the Hamiltonian system has a group of various symmetries that include symmetries with respect to gauge transformations and polarization rotations. We show that the group of rotational symmetries generates a large family of vortex solutions that generalize scalar vortices, vortex pairs with either double or hidden charge and coupled states between solitons and vortices. Novel families of vortices with different frequencies and vortices with different charges at the same component are constructed and their linearized stability problem is block-diagonalized for numerical analysis of unstable eigenvalues.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 151, Issue 4, Pages 3091–3111
DOI: https://doi.org/10.1007/s10958-008-9031-5
Bibliographic databases:
UDC: 517.957
Language: Russian
Citation: A. S. Desyatnikov, D. E. Pelinovsky, J. Yang, “Multi-component vortex solutions in symmetric coupled nonlinear Schrödinger equations”, Fundam. Prikl. Mat., 12:7 (2006), 35–63; J. Math. Sci., 151:4 (2008), 3091–3111
Citation in format AMSBIB
\Bibitem{DesPelYan06}
\by A.~S.~Desyatnikov, D.~E.~Pelinovsky, J.~Yang
\paper Multi-component vortex solutions in symmetric coupled nonlinear Schr\"{o}dinger equations
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 7
\pages 35--63
\mathnet{http://mi.mathnet.ru/fpm1004}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314008}
\zmath{https://zbmath.org/?q=an:1151.35090}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 151
\issue 4
\pages 3091--3111
\crossref{https://doi.org/10.1007/s10958-008-9031-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49349100386}
Linking options:
  • https://www.mathnet.ru/eng/fpm1004
  • https://www.mathnet.ru/eng/fpm/v12/i7/p35
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :145
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024