Foundations of Physics. An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Foundations of Physics. An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics, 2014, Volume 44, Issue 4, Pages 389–405
DOI: https://doi.org/10.1007%2Fs10701-014-9786-0
(Mi fph1)
 

This article is cited in 6 scientific papers (total in 6 papers)

Photon flux and distance from the source: consequences for quantum communication

A. Khrennikova, B. Nilssona, S. Nordebob, I. Volovichc

a International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive Science, Department of Mathematics, Linnaeus University, SE-351 95 Växjö, Sweden
b Department of Physics and Electrical Engineering, Linnaeus University, SE-351 95 Växjö, Sweden
c Steklov Mathematical Institute, Russian Academy of Sciences, Gubkin St. 8, 119991 Moscow, Russia
Citations (6)
Abstract: The paper explores the fundamental physical principles of quantum mechanics (in fact, quantum field theory) that limit the bit rate for long distances and examines the assumption used in this exploration that losses can be ignored. Propagation of photons in optical fibers is modelled using methods of quantum electrodynamics. We define the “photon duration” as the standard deviation of the photon arrival time; we find its asymptotics for long distances and then obtain the main result of the paper: the linear dependence of photon duration on the distance when losses can be ignored. This effect puts the limit to joint increasing of the photon flux and the distance from the source and it has consequences for quantum communication. Once quantum communication develops into a real technology (including essential decrease of losses in optical fibres), it would be appealing to engineers to increase both the photon flux and the distance. And here our “photon flux/distance effect” has to be taken into account. This effect also may set an additional constraint to the performance of a loophole free test of Bell’s type—to close jointly the detection and locality loopholes.
Received: 18.09.2013
Revised: 22.02.2014
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/fph1
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:118
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024