|
Jet penetration effect of an inward-cutting circular shaped charge with different number of detonation points
Sh.-Zh. Wu, X.-A. Fang, Y.-Ch. Li, Zh.-R. Gao, Q.-A. Liu, J.-Q. Liu, J.-L. Xu, W.-B. Gu Army Engineering University of PLA, Nanjing, 210007, China
Abstract:
The breach of a steel column target (steel 45, 120 mm in diameter) by an inward-cutting circular shaped charge is considered. The jet penetration process is simulated by a 3D model run in the ANSYS/LS-DYNA program. The results are compared with actual tests, where photographs of the jet penetration process allowed observation of detonation forms, timing of the jets arising at the cross section of the detonation points, and detonation wave collision points. Different penetration effects are observed with 2-, 4-, or 8-point symmetrical synchronous initiation of detonation. With 2-point initiation, the circular-shaped charge can basically cut off the steel column target, but 4- and 8-point initiations are more effective. A greater number of detonation points provides more detonation wave collision points, higher jet velocity, earlier jet-target contact, greater penetration depth, and more rapid cutting of the target.
Keywords:
Inward-cutting circular shaped charge, penetration performance, detonation form, three-dimensional numerical simulation.
Received: 11.07.2018 Revised: 13.09.2018 Accepted: 24.10.2018
Citation:
Sh.-Zh. Wu, X.-A. Fang, Y.-Ch. Li, Zh.-R. Gao, Q.-A. Liu, J.-Q. Liu, J.-L. Xu, W.-B. Gu, “Jet penetration effect of an inward-cutting circular shaped charge with different number of detonation points”, Fizika Goreniya i Vzryva, 55:6 (2019), 127–136; Combustion, Explosion and Shock Waves, 55:6 (2019), 750–758
Linking options:
https://www.mathnet.ru/eng/fgv643 https://www.mathnet.ru/eng/fgv/v55/i6/p127
|
Statistics & downloads: |
Abstract page: | 26 | Full-text PDF : | 20 |
|