Loading [MathJax]/jax/output/CommonHTML/config.js
Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 1981, Volume 17, Issue 6, Pages 10–15 (Mi fgv5122)  

This article is cited in 40 scientific papers (total in 40 papers)

Effects of capillary flow on combustion in a gas-free system

A. I. Kirdyashkin, Yu. M. Maksimov, A. G. Merzhanov

Tomsk
Citations (40)
Received: 23.12.1980
English version:
Combustion, Explosion and Shock Waves, 1981, Volume 17, Issue 6, Pages 591–595
DOI: https://doi.org/10.1007/BF00784246
Document Type: Article
Language: Russian
Citation: A. I. Kirdyashkin, Yu. M. Maksimov, A. G. Merzhanov, “Effects of capillary flow on combustion in a gas-free system”, Fizika Goreniya i Vzryva, 17:6 (1981), 10–15; Combustion, Explosion and Shock Waves, 17:6 (1981), 591–595
Citation in format AMSBIB
\Bibitem{KirMakMer81}
\by A.~I.~Kirdyashkin, Yu.~M.~Maksimov, A.~G.~Merzhanov
\paper Effects of capillary flow on combustion in a gas-free system
\jour Fizika Goreniya i Vzryva
\yr 1981
\vol 17
\issue 6
\pages 10--15
\mathnet{http://mi.mathnet.ru/fgv5122}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 1981
\vol 17
\issue 6
\pages 591--595
\crossref{https://doi.org/10.1007/BF00784246}
Linking options:
  • https://www.mathnet.ru/eng/fgv5122
  • https://www.mathnet.ru/eng/fgv/v17/i6/p10
  • This publication is cited in the following 40 articles:
    1. Guanghua Liu, Kexin Chen, Jiangtao Li, Combustion Synthesis, 2025, 73  crossref
    2. S. V. Kostin, P. M. Krishenik, “Combustion stability of mixtures of titanium with soot to the local excess of the component”, Combustion, Explosion and Shock Waves, 59:5 (2023), 545–552  mathnet  crossref  crossref  elib
    3. S. V. Kostin, P. M. Krishenik, “Combustion of Inhomogeneous Titanium + Carbon Black Powder Mixture”, Int. J Self-Propag. High-Temp. Synth., 32:4 (2023), 254  crossref
    4. O.V. Lapshin, V.G. Prokofev, 8th International Congress on Energy Fluxes and Radiation Effects, 2022, 1429  crossref
    5. M. A. Ponomarev, V. E. Loryan, N. A. Kochetov, A. S. Shchukin, “Synthesis of a Composite Material via Combustion of Titanium and Boron Powders and a Mechanically Activated Aluminum + Nickel Mixture”, Inorg Mater, 58:2 (2022), 133  crossref
    6. Yu. V. Bogatov, V. A. Shcherbakov, “Influence of Ti and B Powder Mixing Modes on Mixture Properties and SHS Composite Microstructure”, Russ. J. Non-ferrous Metals, 62:2 (2021), 248  crossref
    7. M. A. Ponomarev, V. E. Loryan, “Synthesis of Porous Composite Material with the Combustion of Titanium and Boron Powders and Nickel-Clad Aluminum Granules”, Russ. J. Non-ferrous Metals, 61:6 (2020), 716  crossref
    8. A.G. Knyazeva, E.N. Korosteleva, “Brief Review of Kinetic Regularities of TiXCY-Ti Composites Synthesis”, Rev Adv Mater Tech, 2:3 (2020), 1  crossref
    9. M. A. Ponomarev, V. E. Loryan, “Synthesis of porous composite material at combustion of titanium and boron powders and nickel-clad aluminum granules”, Izv. VUZ. Poroshk. Met., 2020, no. 2, 44  crossref
    10. Yu. V. Bogatov, “Hard Alloy Production by SHS Compaction in Open Matrix”, Russ. J. Non-ferrous Metals, 61:3 (2020), 368  crossref
    11. M. A. Ponomarev, V. E. Loryan, “Synthesis of Composite Material in Al–Ti–B System during Combustion of Titanium and Boron Powders and Aluminum-Clad Granules of VT6 Alloy”, Inorg. Mater. Appl. Res., 10:5 (2019), 1204  crossref
    12. O. V. Lapshin, V. G. Prokof'ev, “Combustion of Gasless Systems: Thermocapillary Convection of Metal Melt”, Int. J Self-Propag. High-Temp. Synth., 28:4 (2019), 221  crossref
    13. V. V. Klubovich, M. M. Kulak, B. B. Khina, “Effect of powerful ultrasound on the combustion processes and phase composition of refractory compounds of titanium at the self-propagating high-temperature synthesis”, Dokl. Akad. nauk, 62:6 (2019), 674  crossref
    14. M. A. Ponomarev, V. E. Loryan, “SHS in the Ti—B System with Strongly Different Size of Ti Particles”, Int. J Self-Propag. High-Temp. Synth., 28:2 (2019), 124  crossref
    15. V. V. Klubovich, M. M. Kulak, B. B. Khina, “Structural and phase states of titanium borides produced by the self-propagating high-temperature synthesis method in the field of ultrasound oscillations”, Vescì Akademìì navuk Belarusì. Seryâ fizika-tehničnyh navuk, 64:2 (2019), 143  crossref
    16. Yury M. Maksimov, Ramil M. Gabbasov, Boris B. Khina, Evgeny A. Levashov, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, 2017, 6  crossref
    17. Boris B. Khina, Mikhail M. Kulak, Evgeny A. Levashov, Yury M. Maksimov, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, 2017, 411  crossref
    18. Yun Zhang, Yinhe Liu, “Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation”, Front. Energy Res., 5 (2017)  crossref
    19. Sergey A. Rashkovskiy, Alexandr Yu. Dolgoborodov, “Structure and Behavior of Gasless Combustion Waves in Powders”, Combustion Science and Technology, 189:12 (2017), 2220  crossref
    20. Guanghua Liu, Jiangtao Li, Kexin Chen, Handbook of Combustion, 2016, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:36
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025