Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 2017, Volume 53, Issue 5, Pages 115–124
DOI: https://doi.org/10.15372/FGV20170514
(Mi fgv447)
 

This article is cited in 10 scientific papers (total in 10 papers)

Synthesis, molecular dynamic simulation, and density functional theory insight into the cocrystal explosive of 2,4,6-trinitrotoluene/1,3,5-trinitrobenzene

P. Maa, Ya.-T. Jina, P.-H. Wua, W. Hua, Y. Pana, X.-W. Zanga, Sh.-G. Zhub

a Jiangsu Key Laboratory of Hazard Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
b School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Abstract: This paper reports the experimental and theoretical studies of the synthesis and behavior of a cocrystal energetic material 2,4,6-trinitrotoluene/1,3,5-trinitrobenzene (TNT/TNB). The performance tests show that this material is more powerful and less sensitive than TNT and TNB. A molecular dynamic simulation is conducted for the cocrystal TNT/TNB by using a COMPASS force field with an NPT ensemble. The density function theory is applied to investigate the band structure and the density of states for various pressures and temperatures. The results show that the TNT/TNB crystal is sensitive to pressures in the interval of 35–50 GPa, and the melting temperature of the crystal is around $\approx$ 320 K, which agrees well with experimental results. The Hirshfeld analysis is carried out to ascertain weak interactions and associated two-dimensional fingerprint plots. The crystal packing is demonstrated to be ensured by H$\cdots$O, C$\cdots$O и O$\cdots$O contacts.
Keywords: TNT/TNB, TNT/TNB, cocrystal energetic material, molecular dynamic simulation, density functional theory, Hirshfeld analysis.
Funding agency Grant number
National Natural Science Foundation of China 21436006
21576136
Received: 04.07.2016
Revised: 16.12.2016
English version:
Combustion, Explosion and Shock Waves, 2017, Volume 53, Issue 5, Pages 596–604
DOI: https://doi.org/10.1134/S0010508217050148
Bibliographic databases:
Document Type: Article
UDC: 536.45
Language: Russian
Citation: P. Ma, Ya.-T. Jin, P.-H. Wu, W. Hu, Y. Pan, X.-W. Zang, Sh.-G. Zhu, “Synthesis, molecular dynamic simulation, and density functional theory insight into the cocrystal explosive of 2,4,6-trinitrotoluene/1,3,5-trinitrobenzene”, Fizika Goreniya i Vzryva, 53:5 (2017), 115–124; Combustion, Explosion and Shock Waves, 53:5 (2017), 596–604
Citation in format AMSBIB
\Bibitem{MaJinWu17}
\by P.~Ma, Ya.-T.~Jin, P.-H.~Wu, W.~Hu, Y.~Pan, X.-W.~Zang, Sh.-G.~Zhu
\paper Synthesis, molecular dynamic simulation, and density functional theory insight into the cocrystal explosive of 2,4,6-trinitrotoluene/1,3,5-trinitrobenzene
\jour Fizika Goreniya i Vzryva
\yr 2017
\vol 53
\issue 5
\pages 115--124
\mathnet{http://mi.mathnet.ru/fgv447}
\crossref{https://doi.org/10.15372/FGV20170514}
\elib{https://elibrary.ru/item.asp?id=30041047}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2017
\vol 53
\issue 5
\pages 596--604
\crossref{https://doi.org/10.1134/S0010508217050148}
Linking options:
  • https://www.mathnet.ru/eng/fgv447
  • https://www.mathnet.ru/eng/fgv/v53/i5/p115
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:35
    Full-text PDF :9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024