|
This article is cited in 8 scientific papers (total in 8 papers)
Brief communications
Asymptotic Invertibility and the Collective Asymptotic Spectral Behavior of Generalized One-Dimensional Discrete Convolutions
O. N. Zabroda, I. B. Simonenko Rostov State University, Faculty of Mechanics and Mathematics
Abstract:
We study the asymptotic invertibility as $n\to+\infty$ of matrices of the form $\alpha_{kj}^{(n)}=a(k/n,j/n,k-j)$ and $\beta_{kj}^{(n)}=b(k/E(n),j/E(n),k-j)$, where $a$ and $b$ are functions defined on the sets $[0,1]\times[0,1]\times\mathbb{Z}$ and $[0,+\infty)\times[0,+\infty)\times\mathbb{Z}$, respectively, $E(n)\to+\infty$, and $n/E(n)\to+\infty$. The joint asymptotic behavior of the spectrum of these matrices is
analyzed.
Keywords:
asymptotic invertibility, matrix, operator, spectrum.
Received: 01.11.2002
Citation:
O. N. Zabroda, I. B. Simonenko, “Asymptotic Invertibility and the Collective Asymptotic Spectral Behavior of Generalized One-Dimensional Discrete Convolutions”, Funktsional. Anal. i Prilozhen., 38:1 (2004), 81–82; Funct. Anal. Appl., 38:1 (2004), 65–66
Linking options:
https://www.mathnet.ru/eng/faa98https://doi.org/10.4213/faa98 https://www.mathnet.ru/eng/faa/v38/i1/p81
|
Statistics & downloads: |
Abstract page: | 341 | Full-text PDF : | 185 | References: | 57 |
|