Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 1, Pages 47–55
DOI: https://doi.org/10.4213/faa95
(Mi faa95)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the Irreducibility of Commuting Varieties Associated with Involutions of Simple Lie Algebras

D. I. Panyushev

Independent University of Moscow
Full-text PDF (203 kB) Citations (9)
References:
Abstract: Let $\mathfrak{g}$ be a reductive Lie algebra over an algebraically closed field of characteristic zero and $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ an arbitrary $\mathbb{Z}_2$-grading. We consider the variety $\mathfrak{C}_1=\{(x,y)\mid[x,y]=0\}\subset\mathfrak{g}_1\times\mathfrak{g}_1$, which is called the commuting variety associated with the $\mathbb{Z}_2$-grading. Earlier it was proved by the author that $\mathfrak{C}_1$ is irreducible, if the $\mathbb{Z}_2$-grading is of maximal rank. Now we show that $\mathfrak{C}_1$ is irreducible for $(\mathfrak{g},\mathfrak{g}_0)=(\mathfrak{sl}_{2n},\mathfrak{sp}_{2n})$ and $(\textrm{E}_6,\textrm{F}_4)$. In the case of symmetric pairs of rank one, we show that the number of irreducible components of $\mathfrak{C}_1$ is equal to that of nonzero non-$\vartheta$-regular nilpotent $G_0$-orbits in $\mathfrak{g}_1$. We also discuss a general problem of the irreducibility of commuting varieties.
Keywords: semisimple Lie algebra, $\mathbb{Z}_2$-grading, commuting variety.
Received: 20.09.2002
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 1, Pages 38–44
DOI: https://doi.org/10.1023/B:FAIA.0000024866.28468.c2
Bibliographic databases:
Document Type: Article
UDC: 512.745
Language: Russian
Citation: D. I. Panyushev, “On the Irreducibility of Commuting Varieties Associated with Involutions of Simple Lie Algebras”, Funktsional. Anal. i Prilozhen., 38:1 (2004), 47–55; Funct. Anal. Appl., 38:1 (2004), 38–44
Citation in format AMSBIB
\Bibitem{Pan04}
\by D.~I.~Panyushev
\paper On the Irreducibility of Commuting Varieties Associated with Involutions of Simple Lie Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 1
\pages 47--55
\mathnet{http://mi.mathnet.ru/faa95}
\crossref{https://doi.org/10.4213/faa95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2061790}
\zmath{https://zbmath.org/?q=an:1125.17001}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 1
\pages 38--44
\crossref{https://doi.org/10.1023/B:FAIA.0000024866.28468.c2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221663700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3543133629}
Linking options:
  • https://www.mathnet.ru/eng/faa95
  • https://doi.org/10.4213/faa95
  • https://www.mathnet.ru/eng/faa/v38/i1/p47
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024