Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 4, Pages 86–89
DOI: https://doi.org/10.4213/faa90
(Mi faa90)
 

This article is cited in 7 scientific papers (total in 7 papers)

Brief communications

On Degrees of Growth of Finitely Generated Groups

A. G. Ershler

CNRS, Université Lille 1, UFR de Mathématiques
Full-text PDF (139 kB) Citations (7)
References:
Abstract: We prove that for an arbitrary function ρ of subexponential growth there exists a group G of intermediate growth whose growth function satisfies the inequality vG,S(n)ρ(n) for all n. For every prime p, one can take G to be a p-group; one can also take a torsion-free group G. We also discuss some generalizations of this assertion.
Keywords: growth of groups, intermediate growth, Grigorchuk group.
Received: 07.02.2004
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 4, Pages 317–320
DOI: https://doi.org/10.1007/s10688-005-0055-z
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: A. G. Ershler, “On Degrees of Growth of Finitely Generated Groups”, Funktsional. Anal. i Prilozhen., 39:4 (2005), 86–89; Funct. Anal. Appl., 39:4 (2005), 317–320
Citation in format AMSBIB
\Bibitem{Ers05}
\by A.~G.~Ershler
\paper On Degrees of Growth of Finitely Generated Groups
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 4
\pages 86--89
\mathnet{http://mi.mathnet.ru/faa90}
\crossref{https://doi.org/10.4213/faa90}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2197519}
\zmath{https://zbmath.org/?q=an:1122.20016}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 4
\pages 317--320
\crossref{https://doi.org/10.1007/s10688-005-0055-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234168400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-29244434840}
Linking options:
  • https://www.mathnet.ru/eng/faa90
  • https://doi.org/10.4213/faa90
  • https://www.mathnet.ru/eng/faa/v39/i4/p86
  • This publication is cited in the following 7 articles:
    1. Bartholdi L., Erschler A., “Groups of Given Intermediate Word Growth”, Ann. Inst. Fourier, 64:5 (2014), 2003–2036  crossref  mathscinet  zmath  isi  scopus
    2. Kassabov M., Pak I., “Groups of Oscillating Intermediate Growth”, Ann. Math., 177:3 (2013), 1113–1145  crossref  mathscinet  zmath  isi  elib  scopus
    3. Brieussel J., “Behaviors of Entropy on Finitely Generated Groups”, Ann. Probab., 41:6 (2013), 4116–4161  crossref  mathscinet  zmath  isi  scopus
    4. Bartholdi L., Erschler A., “Growth of Permutational Extensions”, Invent. Math., 189:2 (2012), 431–455  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. Nekrashevych V., “A group of non-uniform exponential growth locally isomorphic to $\mathrm{IMG}(z^2+i)$”, Trans. Amer. Math. Soc., 362:1 (2010), 389–398  crossref  mathscinet  zmath  isi  elib  scopus
    6. Erschler A., “Automatically presented groups”, Groups Geom. Dyn., 1:1 (2007), 47–59  crossref  mathscinet  zmath  isi
    7. Erschler A., “Piecewise automatic groups”, Duke Math. J., 134:3 (2006), 591–613  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:525
    Full-text PDF :238
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025