Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 4, Pages 22–32
DOI: https://doi.org/10.4213/faa850
(Mi faa850)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of Orthogonal Polynomials Beyond the Scope of Szegő's Theorem

A. L. Vol'berga, F. Peherstorferb, P. M. Yuditskiibc

a Michigan State University
b Johannes Kepler University Linz
c Bar-Ilan University
Full-text PDF (204 kB) Citations (1)
References:
Abstract: First, we give a simple proof of a remarkable result due to Videnskii and Shirokov: let $B$ be a Blaschke product with $n$ zeros; then there exists an outer function $\phi$, $\phi(0)=1$, such that $\|(B\phi)'\|\le C n$, where $C$ is an absolute constant. Then we apply this result to a certain problem of finding the asymptotics of orthogonal polynomials.
Keywords: orthogonal polynomial, extremal problem, Blaschke product, CMV matrix.
Received: 15.03.2006
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 4, Pages 264–272
DOI: https://doi.org/10.1007/s10688-006-0043-y
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: A. L. Vol'berg, F. Peherstorfer, P. M. Yuditskii, “Asymptotics of Orthogonal Polynomials Beyond the Scope of Szegő's Theorem”, Funktsional. Anal. i Prilozhen., 40:4 (2006), 22–32; Funct. Anal. Appl., 40:4 (2006), 264–272
Citation in format AMSBIB
\Bibitem{VolPehYud06}
\by A.~L.~Vol'berg, F.~Peherstorfer, P.~M.~Yuditskii
\paper Asymptotics of Orthogonal Polynomials Beyond the Scope of Szeg\H{o}'s Theorem
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 4
\pages 22--32
\mathnet{http://mi.mathnet.ru/faa850}
\crossref{https://doi.org/10.4213/faa850}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307700}
\zmath{https://zbmath.org/?q=an:1116.33010}
\elib{https://elibrary.ru/item.asp?id=9311889}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 4
\pages 264--272
\crossref{https://doi.org/10.1007/s10688-006-0043-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243542200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846120959}
Linking options:
  • https://www.mathnet.ru/eng/faa850
  • https://doi.org/10.4213/faa850
  • https://www.mathnet.ru/eng/faa/v40/i4/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :236
    References:68
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024