Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 4, Pages 3–21
DOI: https://doi.org/10.4213/faa847
(Mi faa847)
 

This article is cited in 15 scientific papers (total in 15 papers)

Admissible Majorants for Model Subspaces, and Arguments of Inner Functions

A. D. Baranov, V. P. Havin

Saint-Petersburg State University
References:
Abstract: Let $\Theta$ be an inner function in the upper half-plane $\mathbb{C}^+$ and let $K_\Theta$ denote the model subspace $H^2\ominus\Theta H^2$ of the Hardy space $H^2=H^2(\mathbb{C}^+)$. A nonnegative function $w$ on the real line is said to be an admissible majorant for $K_\Theta$ if there exists a nonzero function $f\in K_\Theta$ such that $|f|\le w$ a.e. on $\mathbb{R}$. We prove a refined version of the parametrization formula for $K_\Theta$-admissible majorants and simplify the admissibility criterion (in terms of $\arg\Theta$) obtained in [V. P. Havin and J. Mashreghi, "Admissible majorants for model subspaces of $H^2$. Part I: slow winding of the generating inner function", Canad. J. Math., 55, 6 (2003), 1231–1263]. We show that, for every inner function $\Theta$, there exist minimal $K_\Theta$-admissible majorants. The relationship between admissibility and some weighted approximation problems is considered.
Keywords: Hardy space, inner function, model subspace, entire function, Beurling–Malliavin theorem.
Received: 15.03.2006
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 4, Pages 249–263
DOI: https://doi.org/10.1007/s10688-006-0042-z
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: A. D. Baranov, V. P. Havin, “Admissible Majorants for Model Subspaces, and Arguments of Inner Functions”, Funktsional. Anal. i Prilozhen., 40:4 (2006), 3–21; Funct. Anal. Appl., 40:4 (2006), 249–263
Citation in format AMSBIB
\Bibitem{BarHav06}
\by A.~D.~Baranov, V.~P.~Havin
\paper Admissible Majorants for Model Subspaces, and Arguments of Inner Functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 4
\pages 3--21
\mathnet{http://mi.mathnet.ru/faa847}
\crossref{https://doi.org/10.4213/faa847}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307699}
\zmath{https://zbmath.org/?q=an:1176.30101}
\elib{https://elibrary.ru/item.asp?id=9311888}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 4
\pages 249--263
\crossref{https://doi.org/10.1007/s10688-006-0042-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243542200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748548506}
Linking options:
  • https://www.mathnet.ru/eng/faa847
  • https://doi.org/10.4213/faa847
  • https://www.mathnet.ru/eng/faa/v40/i4/p3
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:752
    Full-text PDF :286
    References:70
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024