Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 3, Pages 87–91
DOI: https://doi.org/10.4213/faa79
(Mi faa79)
 

This article is cited in 3 scientific papers (total in 3 papers)

Brief communications

Translation Invariant Asymptotic Homomorphisms and Extensions of $C^*$-Algebras

V. M. Manuilova, K. Thomsenb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Aarhus, Department of Mathematical Sciences
Full-text PDF (183 kB) Citations (3)
References:
Abstract: Let $A$ and $B$ be $C^*$-algebras, let $A$ be separable, and let $B$ be $\sigma$-unital and stable. We introduce the notion of translation invariance for asymptotic homomorphisms from $SA=C_0(\mathbb{R})\otimes A$ to $B$ and show that the Connes–Higson construction applied to any extension of $A$ by $B$ is homotopic to a translation invariant asymptotic homomorphism. In the other direction we give a construction which produces extensions of $A$ by $B$ from a translation invariant asymptotic homomorphism. This leads to our main result that the homotopy classes of extensions coincide with the homotopy classes of translation invariant asymptotic homomorphisms.
Keywords: $C^*$-algebra, asymptotic homomorphism, Connes–Higson construction, extension of $C^*$-algebras, homotopy equivalence of extensions, homotopy equivalence of asymptotic homomorphisms.
Received: 30.01.2004
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 3, Pages 236–239
DOI: https://doi.org/10.1007/s10688-005-0044-2
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: V. M. Manuilov, K. Thomsen, “Translation Invariant Asymptotic Homomorphisms and Extensions of $C^*$-Algebras”, Funktsional. Anal. i Prilozhen., 39:3 (2005), 87–91; Funct. Anal. Appl., 39:3 (2005), 236–239
Citation in format AMSBIB
\Bibitem{ManTho05}
\by V.~M.~Manuilov, K.~Thomsen
\paper Translation Invariant Asymptotic Homomorphisms and Extensions of $C^*$-Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 3
\pages 87--91
\mathnet{http://mi.mathnet.ru/faa79}
\crossref{https://doi.org/10.4213/faa79}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2174611}
\zmath{https://zbmath.org/?q=an:1122.46052}
\elib{https://elibrary.ru/item.asp?id=14671558}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 3
\pages 236--239
\crossref{https://doi.org/10.1007/s10688-005-0044-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232583600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-26244457746}
Linking options:
  • https://www.mathnet.ru/eng/faa79
  • https://doi.org/10.4213/faa79
  • https://www.mathnet.ru/eng/faa/v39/i3/p87
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:507
    Full-text PDF :196
    References:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024