|
This article is cited in 3 scientific papers (total in 3 papers)
Brief communications
Additivity of Homological Dimensions for a Class of Banach Algebras
S. B. Tabaldyev N. E. Bauman Moscow State Technical University
Abstract:
Let $\Omega$ be a metrizable compact space. Suppose that its derived set of some finite order is empty. Let $B$ be a unital Banach algebra, and let $\widehat{\otimes}$ stand for the projective tensor product. We prove the additivity formulas $\operatorname{dg}C(\Omega)\widehat{\otimes}B=\operatorname{dg}C(\Omega)+\operatorname{dg}B$ and
$\operatorname{db}C(\Omega)\widehat{\otimes}B=\operatorname{db}C(\Omega)+\operatorname{db}B$ for the
global homological dimension and the homological bidimension. Thus these formulas are true for a new class of commutative Banach algebras in addition to those considered earlier by Selivanov.
Keywords:
global homological dimension, homological bidimension, projective Banach module, metrizable compact space, derived set.
Received: 22.06.2005
Citation:
S. B. Tabaldyev, “Additivity of Homological Dimensions for a Class of Banach Algebras”, Funktsional. Anal. i Prilozhen., 40:3 (2006), 93–95; Funct. Anal. Appl., 40:3 (2006), 244–246
Linking options:
https://www.mathnet.ru/eng/faa751https://doi.org/10.4213/faa751 https://www.mathnet.ru/eng/faa/v40/i3/p93
|
Statistics & downloads: |
Abstract page: | 598 | Full-text PDF : | 242 | References: | 90 | First page: | 3 |
|