Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 3, Pages 82–85
DOI: https://doi.org/10.4213/faa748
(Mi faa748)
 

This article is cited in 27 scientific papers (total in 27 papers)

Brief communications

Weighted $L_p$-Algebras on Groups

Yu. N. Kuznetsova

Moscow State Institute of Electronics and Mathematics
References:
Abstract: The space $L_p(G)$, $1<p<\infty$, on a locally compact group $G$ is known to be closed under convolution only if $G$ is compact. However, the weighted spaces $L_p(G,w)$ are Banach algebras with respect to convolution and natural norm under certain conditions on the weight. In the present paper, sufficient conditions for a weight defining a convolution algebra are stated in general form. These conditions are well known in some special cases. The spectrum (the maximal ideal space) of the algebra $L_p(G,w)$ on an Abelian group $G$ is described. It is shown that all algebras of this type are semisimple.
Keywords: weighted convolution algebra, Beurling algebra, multiplicative spectrum, locally compact Abelian group.
Received: 03.06.2005
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 3, Pages 234–236
DOI: https://doi.org/10.1007/s10688-006-0037-9
Bibliographic databases:
Document Type: Article
UDC: 517.982
Language: Russian
Citation: Yu. N. Kuznetsova, “Weighted $L_p$-Algebras on Groups”, Funktsional. Anal. i Prilozhen., 40:3 (2006), 82–85; Funct. Anal. Appl., 40:3 (2006), 234–236
Citation in format AMSBIB
\Bibitem{Kuz06}
\by Yu.~N.~Kuznetsova
\paper Weighted $L_p$-Algebras on Groups
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 3
\pages 82--85
\mathnet{http://mi.mathnet.ru/faa748}
\crossref{https://doi.org/10.4213/faa748}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265690}
\zmath{https://zbmath.org/?q=an:1117.43002}
\elib{https://elibrary.ru/item.asp?id=9296648}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 3
\pages 234--236
\crossref{https://doi.org/10.1007/s10688-006-0037-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241583800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749526851}
Linking options:
  • https://www.mathnet.ru/eng/faa748
  • https://doi.org/10.4213/faa748
  • https://www.mathnet.ru/eng/faa/v40/i3/p82
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024