Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 3, Pages 37–53
DOI: https://doi.org/10.4213/faa73
(Mi faa73)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the Number of Unbounded Solution Branches in a Neighborhood of an Asymptotic Bifurcation Point

A. M. Krasnosel'skii, D. I. Rachinskii

Institute for Information Transmission Problems, Russian Academy of Sciences
Full-text PDF (272 kB) Citations (5)
References:
Abstract: We suggest a method for studying asymptotically linear vector fields with a parameter. The method permits one to prove theorems on asymptotic bifurcation points (bifurcation points at infinity) for the case of double degeneration of the principal linear part. We single out a class of fields that have more than two unbounded branches of singular points in a neighborhood of a bifurcation point. Some applications of the general theorems to bifurcations of periodic solutions and subharmonics as well as to the two-point boundary value problem are given.
Keywords: asymptotic bifurcation point, solution branch, asymptotically homogeneous operator, periodic oscillations, subharmonic.
Received: 15.09.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 3, Pages 194–206
DOI: https://doi.org/10.1007/s10688-005-0038-0
Bibliographic databases:
Document Type: Article
UDC: 517.988.67
Language: Russian
Citation: A. M. Krasnosel'skii, D. I. Rachinskii, “On the Number of Unbounded Solution Branches in a Neighborhood of an Asymptotic Bifurcation Point”, Funktsional. Anal. i Prilozhen., 39:3 (2005), 37–53; Funct. Anal. Appl., 39:3 (2005), 194–206
Citation in format AMSBIB
\Bibitem{KraRac05}
\by A.~M.~Krasnosel'skii, D.~I.~Rachinskii
\paper On the Number of Unbounded Solution Branches in a Neighborhood of an Asymptotic Bifurcation Point
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 3
\pages 37--53
\mathnet{http://mi.mathnet.ru/faa73}
\crossref{https://doi.org/10.4213/faa73}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2174605}
\zmath{https://zbmath.org/?q=an:1128.47055}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 3
\pages 194--206
\crossref{https://doi.org/10.1007/s10688-005-0038-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232583600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-26244458328}
Linking options:
  • https://www.mathnet.ru/eng/faa73
  • https://doi.org/10.4213/faa73
  • https://www.mathnet.ru/eng/faa/v39/i3/p37
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:516
    Full-text PDF :224
    References:92
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024