Citation:
A. H. Dooley, N. J. Wildberger, “Harmonic Analysis and the Global Exponential Map for Compact Lie Groups”, Funktsional. Anal. i Prilozhen., 27:1 (1993), 25–32; Funct. Anal. Appl., 27:1 (1993), 21–27
\Bibitem{DooWil93}
\by A.~H.~Dooley, N.~J.~Wildberger
\paper Harmonic Analysis and the Global Exponential Map for Compact Lie Groups
\jour Funktsional. Anal. i Prilozhen.
\yr 1993
\vol 27
\issue 1
\pages 25--32
\mathnet{http://mi.mathnet.ru/faa679}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1225907}
\zmath{https://zbmath.org/?q=an:0804.22011}
\transl
\jour Funct. Anal. Appl.
\yr 1993
\vol 27
\issue 1
\pages 21--27
\crossref{https://doi.org/10.1007/BF01768664}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LQ87700003}
Linking options:
https://www.mathnet.ru/eng/faa679
https://www.mathnet.ru/eng/faa/v27/i1/p25
This publication is cited in the following 15 articles:
Neil He, Menglin Yang, Rex Ying, Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1, 2025, 436
Kathryn E. Hare, Jimmy He, “A geometric proof of the L2L2L2-singular dichotomy for orbital measures on Lie algebras and groups”, Boll Unione Mat Ital, 11:4 (2018), 573
Manon Defosseux, “Fusion coefficients and random walks in alcoves”, Ann. Inst. H. Poincaré Probab. Statist., 52:4 (2016)
Alexander Stottmeister, Thomas Thiemann, “Coherent states, quantum gravity, and the Born- Oppenheimer approximation. II. Compact Lie groups”, Journal of Mathematical Physics, 57:7 (2016)
K. E. HARE, D. L. JOHNSTONE, F. SHI, W.-K. YEUNG, “THE -SINGULAR DICHOTOMY FOR EXCEPTIONAL LIE GROUPS AND ALGEBRAS”, J. Aust. Math. Soc., 95:3 (2013), 362
Manon Defosseux, “Orbit measures, random matrix theory and interlaced determinantal processes”, Ann. Inst. H. Poincaré Probab. Statist., 46:1 (2010)
Sanjiv Kumar Gupta, Kathryn E. Hare, Sobhan Seyfaddini, “L 2-singular dichotomy for orbital measures of classical simple Lie algebras”, Math. Z., 262:1 (2009), 91
Alan Weinstein, “The Volume of a Differentiable Stack”, Lett Math Phys, 90:1-3 (2009), 353
Sanjiv Kumar Gupta, Kathryn E. Hare, “L2-singular dichotomy for orbital measures of classical compact Lie groups”, Advances in Mathematics, 222:5 (2009), 1521
Margit Rösler, Michael Voit, “SU(d)-Biinvariant Random Walks on SL(d,C) and their Euclidean Counterparts”, Acta Appl Math, 90:1-2 (2006), 179
Sanjiv Gupta, Kathryn E. Hare, “The Dichotomy Problem for Orbital Measures of SU(n)”, Mh Math, 146:3 (2005), 227
Sanjiv Kumar Gupta, Kathryn E. Hare, “Singularity of orbital measures in SU(n)”, Isr. J. Math., 130:1 (2002), 93
Alexander A. Klyachko, “Random walks on symmetric spaces and inequalities for matrix spectra”, Linear Algebra and its Applications, 319:1-3 (2000), 37
Anthony Dooley, Sanjiv Gupta, “Continuous singular measures with absolutely continuous convolution squares”, Proc. Amer. Math. Soc., 124:10 (1996), 3115
Vyacheslav Spiridonov, “Universal superpositions of coherent states and self-similar potentials”, Phys. Rev. A, 52:3 (1995), 1909