Citation:
O. I. Mokhov, E. V. Ferapontov, “Hamiltonian Pairs Associated with Skew-Symmetric Killing Tensors on Spaces of Constant Curvature”, Funktsional. Anal. i Prilozhen., 28:2 (1994), 60–63; Funct. Anal. Appl., 28:2 (1994), 123–125
This publication is cited in the following 14 articles:
Pierandrea Vergallo, “Non-homogeneous Hamiltonian structures for quasilinear systems”, Boll Unione Mat Ital, 17:2 (2024), 513
Xin Hu, Matteo Casati, “Multidimensional Nonhomogeneous Quasi-Linear Systems and Their Hamiltonian Structure”, SIGMA, 20 (2024), 081, 17 pp.
Marta Dell'Atti, Pierandrea Vergallo, “Classification of degenerate non-homogeneous Hamiltonian operators”, Journal of Mathematical Physics, 64:3 (2023)
Pierandrea Vergallo, “Quasilinear Systems of First Order PDEs with Nonlocal Hamiltonian Structures”, Math Phys Anal Geom, 25:4 (2022)
Maltsev A.Ya. Novikov S.P., “Poisson Brackets of Hydrodynamic Type and Their Generalizations”, J. Exp. Theor. Phys., 132:4, SI (2021), 645–657
O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937
Andrea Savoldi, “On deformations of one-dimensional Poisson structures of hydrodynamic type with degenerate metric”, Journal of Geometry and Physics, 104 (2016), 246
O. I. Mokhov, “Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics”, Theoret. and Math. Phys., 130:2 (2002), 198–212
O. I. Mokhov, “Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them”, Theoret. and Math. Phys., 132:1 (2002), 942–954
O. I. Mokhov, “Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type”, Theoret. and Math. Phys., 133:2 (2002), 1557–1564
O. I. Mokhov, “Compatible and Almost Compatible Pseudo-Riemannian Metrics”, Funct. Anal. Appl., 35:2 (2001), 100–110
I. Z. Golubchik, V. V. Sokolov, “Generalized Heisenberg equations on Z-graded Lie algebras”, Theoret. and Math. Phys., 120:2 (1999), 1019–1025
O. I. Mokhov, “On the Cohomology Groups of Complexes of Homogeneous Forms on Loop Spaces of Smooth Manifolds”, Funct. Anal. Appl., 32:3 (1998), 162–171
O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622