Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1994, Volume 28, Issue 2, Pages 60–63 (Mi faa637)  

This article is cited in 14 scientific papers (total in 14 papers)

Brief communications

Hamiltonian Pairs Associated with Skew-Symmetric Killing Tensors on Spaces of Constant Curvature

O. I. Mokhova, E. V. Ferapontovb

a All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements
b Institute for Mathematical Modelling, Russian Academy of Sciences
References:
Received: 10.11.1992
English version:
Functional Analysis and Its Applications, 1994, Volume 28, Issue 2, Pages 123–125
DOI: https://doi.org/10.1007/BF01076502
Bibliographic databases:
Document Type: Article
UDC: 514.7
Language: Russian
Citation: O. I. Mokhov, E. V. Ferapontov, “Hamiltonian Pairs Associated with Skew-Symmetric Killing Tensors on Spaces of Constant Curvature”, Funktsional. Anal. i Prilozhen., 28:2 (1994), 60–63; Funct. Anal. Appl., 28:2 (1994), 123–125
Citation in format AMSBIB
\Bibitem{MokFer94}
\by O.~I.~Mokhov, E.~V.~Ferapontov
\paper Hamiltonian Pairs Associated with Skew-Symmetric Killing Tensors on Spaces of Constant Curvature
\jour Funktsional. Anal. i Prilozhen.
\yr 1994
\vol 28
\issue 2
\pages 60--63
\mathnet{http://mi.mathnet.ru/faa637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1283256}
\zmath{https://zbmath.org/?q=an:0832.53027}
\transl
\jour Funct. Anal. Appl.
\yr 1994
\vol 28
\issue 2
\pages 123--125
\crossref{https://doi.org/10.1007/BF01076502}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PM65100010}
Linking options:
  • https://www.mathnet.ru/eng/faa637
  • https://www.mathnet.ru/eng/faa/v28/i2/p60
  • This publication is cited in the following 14 articles:
    1. Pierandrea Vergallo, “Non-homogeneous Hamiltonian structures for quasilinear systems”, Boll Unione Mat Ital, 17:2 (2024), 513  crossref
    2. Xin Hu, Matteo Casati, “Multidimensional Nonhomogeneous Quasi-Linear Systems and Their Hamiltonian Structure”, SIGMA, 20 (2024), 081, 17 pp.  mathnet  crossref
    3. Marta Dell'Atti, Pierandrea Vergallo, “Classification of degenerate non-homogeneous Hamiltonian operators”, Journal of Mathematical Physics, 64:3 (2023)  crossref
    4. Pierandrea Vergallo, “Quasilinear Systems of First Order PDEs with Nonlocal Hamiltonian Structures”, Math Phys Anal Geom, 25:4 (2022)  crossref
    5. Maltsev A.Ya. Novikov S.P., “Poisson Brackets of Hydrodynamic Type and Their Generalizations”, J. Exp. Theor. Phys., 132:4, SI (2021), 645–657  crossref  isi
    6. O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Andrea Savoldi, “On deformations of one-dimensional Poisson structures of hydrodynamic type with degenerate metric”, Journal of Geometry and Physics, 104 (2016), 246  crossref
    8. O. I. Mokhov, “Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics”, Theoret. and Math. Phys., 130:2 (2002), 198–212  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. O. I. Mokhov, “Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them”, Theoret. and Math. Phys., 132:1 (2002), 942–954  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. O. I. Mokhov, “Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type”, Theoret. and Math. Phys., 133:2 (2002), 1557–1564  mathnet  crossref  crossref  mathscinet  isi  elib
    11. O. I. Mokhov, “Compatible and Almost Compatible Pseudo-Riemannian Metrics”, Funct. Anal. Appl., 35:2 (2001), 100–110  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. I. Z. Golubchik, V. V. Sokolov, “Generalized Heisenberg equations on Z-graded Lie algebras”, Theoret. and Math. Phys., 120:2 (1999), 1019–1025  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. O. I. Mokhov, “On the Cohomology Groups of Complexes of Homogeneous Forms on Loop Spaces of Smooth Manifolds”, Funct. Anal. Appl., 32:3 (1998), 162–171  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :156
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025