Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1994, Volume 28, Issue 2, Pages 31–40 (Mi faa631)  

This article is cited in 34 scientific papers (total in 34 papers)

Thoma's Theorem and Representations of the Infinite Bisymmetric Group

A. Yu. Okounkov

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Received: 06.01.1994
English version:
Functional Analysis and Its Applications, 1994, Volume 28, Issue 2, Pages 100–107
DOI: https://doi.org/10.1007/BF01076496
Bibliographic databases:
Document Type: Article
UDC: 512.547
Language: Russian
Citation: A. Yu. Okounkov, “Thoma's Theorem and Representations of the Infinite Bisymmetric Group”, Funktsional. Anal. i Prilozhen., 28:2 (1994), 31–40; Funct. Anal. Appl., 28:2 (1994), 100–107
Citation in format AMSBIB
\Bibitem{Oko94}
\by A.~Yu.~Okounkov
\paper Thoma's Theorem and Representations of the Infinite Bisymmetric Group
\jour Funktsional. Anal. i Prilozhen.
\yr 1994
\vol 28
\issue 2
\pages 31--40
\mathnet{http://mi.mathnet.ru/faa631}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1283250}
\zmath{https://zbmath.org/?q=an:0830.20029}
\transl
\jour Funct. Anal. Appl.
\yr 1994
\vol 28
\issue 2
\pages 100--107
\crossref{https://doi.org/10.1007/BF01076496}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PM65100004}
Linking options:
  • https://www.mathnet.ru/eng/faa631
  • https://www.mathnet.ru/eng/faa/v28/i2/p31
  • This publication is cited in the following 34 articles:
    1. A. M. Vershik, “Kommentarii k rabote E. Toma “Kharaktery schetnoi beskonechnoi simmetricheskoi gruppy” i alternativnaya formulirovka problemy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXV, Zap. nauchn. sem. POMI, 528, POMI, SPb., 2023, 37–46  mathnet
    2. Alexander Belton, Dominique Guillot, Apoorva Khare, Mihai Putinar, “Hirschman–Widder densities”, Applied and Computational Harmonic Analysis, 60 (2022), 396  crossref
    3. A. M. Vershik, N. V. Tsilevich, “The Schur–Weyl graph and Thoma's theorem.”, Funct. Anal. Appl., 55:3 (2021), 198–209  mathnet  crossref  crossref  isi
    4. N. I. Nessonov, “Characters of the Infinite Symmetric Inverse Semigroup”, Funct. Anal. Appl., 54:3 (2020), 179–187  mathnet  crossref  crossref  mathscinet  isi
    5. Matveev K., “Macdonald-Positive Specializations of the Algebra of Symmetric Functions: Proof of the Kerov Conjecture”, Ann. Math., 189:1 (2019), 277–316  crossref  mathscinet  zmath  isi  scopus
    6. A. M. Vershik, “Three Theorems on the Uniqueness of the Plancherel Measure from Different Viewpoints”, Proc. Steklov Inst. Math., 305 (2019), 63–77  mathnet  crossref  crossref  mathscinet  isi  elib
    7. Pablo Gonzalez Pagotto, “A Product on Double Cosets of B”, SIGMA, 14 (2018), 134, 18 pp.  mathnet  crossref
    8. J. Math. Sci. (N. Y.), 232:2 (2018), 138–156  mathnet  crossref
    9. Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surveys, 70:4 (2015), 715–773  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. M. Vershik, N. I. Nessonov, “Stable representations of the infinite symmetric group”, Izv. Math., 79:6 (2015), 1184–1214  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Gorin V. Kerov S. Vershik A., “Finite Traces and Representations of the Group of Infinite Matrices Over a Finite Field”, Adv. Math., 254 (2014), 331–395  crossref  isi
    12. N. I. Nessonov, “KMS States on S Invariant with Respect to the Young Subgroups”, Funct. Anal. Appl., 47:2 (2013), 127–137  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. Alexander Gnedin, Vadim Gorin, Sergei Kerov, “Block characters of the symmetric groups”, J Algebr Comb, 38:1 (2013), 79  crossref
    14. N. I. Nessonov, “Representations of S admissible with respect to Young subgroups”, Sb. Math., 203:3 (2012), 424–458  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. Neretin Yu., “Infinite Tri-symmetric Group, Multiplication of Double Cosets, and Checker Topological Field Theories”, Int Math Res Not, 2012, no. 3, 501–523  isi
    16. N. I. Nessonov, “On realizations of representations of the infinite symmetric group”, J. Math. Sci. (N. Y.), 190:3 (2013), 468–471  mathnet  crossref  mathscinet
    17. Vershik A.M., Nessonov N.I., “Stabilnye sostoyaniya i predstavleniya beskonechnoi simmetricheskoi gruppy”, Doklady Akademii nauk, 445:1 (2012), 9–9  elib
    18. Yu. Neretin, “Infinite Tri-symmetric Group, Multiplication of Double Cosets, and Checker Topological Field Theories”, International Mathematics Research Notices, 2012:3 (2012), 501  crossref
    19. A. M. Vershik, N. I. Nessonov, “Stable states and representations of the infinite symmetric group”, Dokl. Math., 86:1 (2012), 450  crossref
    20. Vadim Gorin, “The q-Gelfand–Tsetlin graph, Gibbs measures and q-Toeplitz matrices”, Advances in Mathematics, 229:1 (2012), 201  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1203
    Full-text PDF :400
    References:106
    First page:1
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025