Citation:
O. K. Sheinman, “Weil Modules with Highest Weight for Affine Lie Algebras on Riemann Surfaces”, Funktsional. Anal. i Prilozhen., 29:1 (1995), 56–71; Funct. Anal. Appl., 29:1 (1995), 44–55
\Bibitem{She95}
\by O.~K.~Sheinman
\paper Weil Modules with Highest Weight for Affine Lie Algebras on Riemann Surfaces
\jour Funktsional. Anal. i Prilozhen.
\yr 1995
\vol 29
\issue 1
\pages 56--71
\mathnet{http://mi.mathnet.ru/faa566}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1328538}
\zmath{https://zbmath.org/?q=an:0848.17023}
\transl
\jour Funct. Anal. Appl.
\yr 1995
\vol 29
\issue 1
\pages 44--55
\crossref{https://doi.org/10.1007/BF01077040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RW33900005}
Linking options:
https://www.mathnet.ru/eng/faa566
https://www.mathnet.ru/eng/faa/v29/i1/p56
This publication is cited in the following 12 articles:
Martin Schlichenmaier, Abel Symposia, 16, Geometry, Lie Theory and Applications, 2022, 279
Martin Schlichenmaier, Algebra and Applications 1, 2021, 199
Martin Schlichenmaier, Harmonic and Complex Analysis and its Applications, 2014, 325
Ben Cox, Elizabeth Jurisich, “Realizations of the three-point Lie algebra sl(2,ℛ) ⊕ (Ωℛ∕dℛ)”, Pacific J. Math., 270:1 (2014), 27
André Bueno, Ben Cox, Vyacheslav Futorny, “Free field realizations of the elliptic affine Lie algebra sl(2,R)⊕(ΩR/dR)”, Journal of Geometry and Physics, 59:9 (2009), 1258
Ben Cox, “Realizations of the four point affine Lie algebrasl(2, R) ⊕(ΩR⁄dR)”, Pacific J. Math., 234:2 (2008), 261
O. K. Sheinman, “Krichever–Novikov Algebras, their Representations and Applications in Geometry and Mathematical Physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), S85–S161
Schlichenmaier M., “A global operator approach to Wess-Zumino-Novikov-Witten models”, XXVI Workshop on Geometrical Methods in Physics, AIP Conference Proceedings, 956, 2007, 107–119
H W Braden, V A Dolgushev, M A Olshanetsky, A V Zotov, “Classicalr-matrices and the Feigin–Odesskii algebra via Hamiltonian and Poisson reductions”, J. Phys. A: Math. Gen., 36:25 (2003), 6979
O. K. Sheinman, “The Fermion Model of Representations of Affine Krichever–Novikov Algebras”, Funct. Anal. Appl., 35:3 (2001), 209–219
M. Schlichenmaier, O. K. Sheinman, “Wess–Zumino–Witten–Novikov theory, Knizhnik–Zamolodchikov equations, and Krichever–Novikov algebras”, Russian Math. Surveys, 54:1 (1999), 213–249
M. Schlichenmaier, O. K. Scheinman, “The Sugawara construction and Casimir operators for Krichever-Novikov algebras”, J Math Sci, 92:2 (1998), 3807