Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1996, Volume 30, Issue 2, Pages 1–18
DOI: https://doi.org/10.4213/faa518
(Mi faa518)
 

This article is cited in 25 scientific papers (total in 26 papers)

Estimates of s-Numbers and Spectral Asymptotics for Integral Operators of Potential Type on Nonsmooth Surfaces

M. S. Agranovich, B. A. Amosov

Moscow State Institute of Electronics and Mathematics (Technical University)
References:
Received: 25.12.1995
English version:
Functional Analysis and Its Applications, 1996, Volume 30, Issue 2, Pages 75–89
DOI: https://doi.org/10.1007/BF02509448
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: M. S. Agranovich, B. A. Amosov, “Estimates of s-Numbers and Spectral Asymptotics for Integral Operators of Potential Type on Nonsmooth Surfaces”, Funktsional. Anal. i Prilozhen., 30:2 (1996), 1–18; Funct. Anal. Appl., 30:2 (1996), 75–89
Citation in format AMSBIB
\Bibitem{AgrAmo96}
\by M.~S.~Agranovich, B.~A.~Amosov
\paper Estimates of $s$-Numbers and Spectral Asymptotics for Integral Operators of Potential Type on Nonsmooth Surfaces
\jour Funktsional. Anal. i Prilozhen.
\yr 1996
\vol 30
\issue 2
\pages 1--18
\mathnet{http://mi.mathnet.ru/faa518}
\crossref{https://doi.org/10.4213/faa518}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1402078}
\zmath{https://zbmath.org/?q=an:0895.47014}
\transl
\jour Funct. Anal. Appl.
\yr 1996
\vol 30
\issue 2
\pages 75--89
\crossref{https://doi.org/10.1007/BF02509448}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VW86100001}
Linking options:
  • https://www.mathnet.ru/eng/faa518
  • https://doi.org/10.4213/faa518
  • https://www.mathnet.ru/eng/faa/v30/i2/p1
  • This publication is cited in the following 26 articles:
    1. Mikhail Karpukhin, Jean Lagacé, Iosif Polterovich, “Weyl's Law for the Steklov Problem on Surfaces with Rough Boundary”, Arch Rational Mech Anal, 247:5 (2023)  crossref
    2. Ponge R., “Weyl'S Laws and Connes' Integration Formulas For Matrix-Valued Llogl-Orlicz Potentials”, Math. Phys. Anal. Geom., 25:2 (2022), 10  crossref  isi
    3. N. A. Pak, V. V. Yuneman, E. Y. Kutenkova, “The role of technical specialists in modern production”, Interexpo GEO-Siberia, 8:2 (2022), 151  crossref
    4. Grigori Rozenblum, Grigory Tashchiyan, “Eigenvalues of the Birman-Schwinger operator for singular measures: The noncritical case”, Journal of Functional Analysis, 283:12 (2022), 109704  crossref
    5. Miyanishi Y., Rozenblum G., “Spectral Properties of the Neumann-Poincare Operator in 3D Elasticity”, Int. Math. Res. Notices, 2021:11 (2021), 8715–8740  crossref  isi
    6. Behrndt J. Exner P. Holzmann M. Lotoreichik V., “The Landau Hamiltonian With Delta-Potentials Supported on Curves”, Rev. Math. Phys., 32:4 (2020), 2050010  crossref  isi
    7. Rozenblum G., Tashchiyan G., “Eigenvalue Asymptotics For Potential Type Operators on Lipschitz Surfaces of Codimension Greater Than 1”, Opusc. Math., 38:5, SI (2018), 733–758  crossref  isi  scopus
    8. Girouard A. Polterovich I., “Spectral Geometry of the Steklov Problem (Survey Article)”, J. Spectr. Theory, 7:2 (2017), 321–359  crossref  mathscinet  zmath  isi  scopus
    9. Chang T., “Boundary integral operator for the fractional Laplacian on the boundary of a bounded smooth domain”, J. Integral Equ. Appl., 28:3 (2016), 343–372  crossref  mathscinet  zmath  isi  elib  scopus
    10. M. S. Agranovich, “Spectral problems in Lipschitz domains”, Journal of Mathematical Sciences, 190:1 (2013), 8–33  mathnet  crossref  mathscinet
    11. M. S. Agranovich, “Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface”, Funct. Anal. Appl., 45:1 (2011), 1–12  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. M. S. Agranovich, “Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems”, Funct. Anal. Appl., 45:2 (2011), 81–98  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. El Diwani, G, “Degradation of 2, 4, 6-trinitotoluene in aqueous solution by ozonation and multi-stage ozonation biological treatment”, International Journal of Environmental Science and Technology, 6:4 (2009), 619  crossref  isi
    14. Agranovich, MS, “On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain”, Russian Journal of Mathematical Physics, 13:3 (2006), 239  crossref  mathscinet  zmath  adsnasa  isi  scopus
    15. Rozenblum, G, “Eigenvalue asymptotics for potential type operators on Lipschitz surfaces”, Russian Journal of Mathematical Physics, 13:3 (2006), 326  crossref  mathscinet  zmath  adsnasa  isi  scopus
    16. Agranovich M.S., “Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface”, Pseudo-Differential Operators and Related Topics, Operator Theory : Advances and Applications, 164, 2006, 1–21  crossref  mathscinet  zmath  isi
    17. VanStone, N, “Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis”, Journal of Contaminant Hydrology, 78:4 (2005), 313  crossref  adsnasa  isi  scopus
    18. Jafarpour, B, “Quantification and modelling of 2,4-dinitrotoluene reduction with high-purity and cast iron”, Journal of Contaminant Hydrology, 76:1–2 (2005), 87  crossref  adsnasa  isi  scopus
    19. Zhang, H, “The use of ultrasound to enhance the decolorization of the CI Acid Orange 7 by zero-valent iron”, Dyes and Pigments, 65:1 (2005), 39  crossref  isi  scopus
    20. M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:629
    Full-text PDF :261
    References:87
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025