Citation:
M. S. Agranovich, B. A. Amosov, “Estimates of s-Numbers and Spectral Asymptotics for Integral Operators of Potential Type on Nonsmooth Surfaces”, Funktsional. Anal. i Prilozhen., 30:2 (1996), 1–18; Funct. Anal. Appl., 30:2 (1996), 75–89
\Bibitem{AgrAmo96}
\by M.~S.~Agranovich, B.~A.~Amosov
\paper Estimates of $s$-Numbers and Spectral Asymptotics for Integral Operators of Potential Type on Nonsmooth Surfaces
\jour Funktsional. Anal. i Prilozhen.
\yr 1996
\vol 30
\issue 2
\pages 1--18
\mathnet{http://mi.mathnet.ru/faa518}
\crossref{https://doi.org/10.4213/faa518}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1402078}
\zmath{https://zbmath.org/?q=an:0895.47014}
\transl
\jour Funct. Anal. Appl.
\yr 1996
\vol 30
\issue 2
\pages 75--89
\crossref{https://doi.org/10.1007/BF02509448}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VW86100001}
Linking options:
https://www.mathnet.ru/eng/faa518
https://doi.org/10.4213/faa518
https://www.mathnet.ru/eng/faa/v30/i2/p1
This publication is cited in the following 26 articles:
Mikhail Karpukhin, Jean Lagacé, Iosif Polterovich, “Weyl's Law for the Steklov Problem on Surfaces with Rough Boundary”, Arch Rational Mech Anal, 247:5 (2023)
Ponge R., “Weyl'S Laws and Connes' Integration Formulas For Matrix-Valued Llogl-Orlicz Potentials”, Math. Phys. Anal. Geom., 25:2 (2022), 10
N. A. Pak, V. V. Yuneman, E. Y. Kutenkova, “The role of technical specialists in modern production”, Interexpo GEO-Siberia, 8:2 (2022), 151
Grigori Rozenblum, Grigory Tashchiyan, “Eigenvalues of the Birman-Schwinger operator for singular measures: The noncritical case”, Journal of Functional Analysis, 283:12 (2022), 109704
Miyanishi Y., Rozenblum G., “Spectral Properties of the Neumann-Poincare Operator in 3D Elasticity”, Int. Math. Res. Notices, 2021:11 (2021), 8715–8740
Behrndt J. Exner P. Holzmann M. Lotoreichik V., “The Landau Hamiltonian With Delta-Potentials Supported on Curves”, Rev. Math. Phys., 32:4 (2020), 2050010
Rozenblum G., Tashchiyan G., “Eigenvalue Asymptotics For Potential Type Operators on Lipschitz Surfaces of Codimension Greater Than 1”, Opusc. Math., 38:5, SI (2018), 733–758
Girouard A. Polterovich I., “Spectral Geometry of the Steklov Problem (Survey Article)”, J. Spectr. Theory, 7:2 (2017), 321–359
Chang T., “Boundary integral operator for the fractional Laplacian on the boundary of a bounded smooth domain”, J. Integral Equ. Appl., 28:3 (2016), 343–372
M. S. Agranovich, “Spectral problems in Lipschitz domains”, Journal of Mathematical Sciences, 190:1 (2013), 8–33
M. S. Agranovich, “Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface”, Funct. Anal. Appl., 45:1 (2011), 1–12
M. S. Agranovich, “Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems”, Funct. Anal. Appl., 45:2 (2011), 81–98
El Diwani, G, “Degradation of 2, 4, 6-trinitotoluene in aqueous solution by ozonation and multi-stage ozonation biological treatment”, International Journal of Environmental Science and Technology, 6:4 (2009), 619
Agranovich, MS, “On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain”, Russian Journal of Mathematical Physics, 13:3 (2006), 239
Rozenblum, G, “Eigenvalue asymptotics for potential type operators on Lipschitz surfaces”, Russian Journal of Mathematical Physics, 13:3 (2006), 326
Agranovich M.S., “Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface”, Pseudo-Differential Operators and Related Topics, Operator Theory : Advances and Applications, 164, 2006, 1–21
VanStone, N, “Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis”, Journal of Contaminant Hydrology, 78:4 (2005), 313
Jafarpour, B, “Quantification and modelling of 2,4-dinitrotoluene reduction with high-purity and cast iron”, Journal of Contaminant Hydrology, 76:1–2 (2005), 87
Zhang, H, “The use of ultrasound to enhance the decolorization of the CI Acid Orange 7 by zero-valent iron”, Dyes and Pigments, 65:1 (2005), 39
M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920