Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 2, Pages 44–54
DOI: https://doi.org/10.4213/faa5
(Mi faa5)
 

This article is cited in 14 scientific papers (total in 14 papers)

Noncommutative Riesz Theorem and Weak Burnside Type Theorem on Twisted Conjugacy

E. V. Troitskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The paper consists of two parts. In the first part, we prove a noncommutative analog of the Riesz(–Markov–Kakutani) theorem on representation of functionals on an algebra of continuous functions by regular measures on the underlying space. In the second part, using this result, we prove a weak version of a Burnside type theorem on twisted conjugacy for arbitrary discrete groups.
Received: 25.02.2005
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 2, Pages 117–125
DOI: https://doi.org/10.1007/s10688-006-0018-z
Bibliographic databases:
Document Type: Article
UDC: 517.986.66
Language: Russian
Citation: E. V. Troitskii, “Noncommutative Riesz Theorem and Weak Burnside Type Theorem on Twisted Conjugacy”, Funktsional. Anal. i Prilozhen., 40:2 (2006), 44–54; Funct. Anal. Appl., 40:2 (2006), 117–125
Citation in format AMSBIB
\Bibitem{Tro06}
\by E.~V.~Troitskii
\paper Noncommutative Riesz Theorem and Weak Burnside Type Theorem on Twisted Conjugacy
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 2
\pages 44--54
\mathnet{http://mi.mathnet.ru/faa5}
\crossref{https://doi.org/10.4213/faa5}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2256862}
\zmath{https://zbmath.org/?q=an:1149.43004}
\elib{https://elibrary.ru/item.asp?id=9213513}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 2
\pages 117--125
\crossref{https://doi.org/10.1007/s10688-006-0018-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238498600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744825978}
Linking options:
  • https://www.mathnet.ru/eng/faa5
  • https://doi.org/10.4213/faa5
  • https://www.mathnet.ru/eng/faa/v40/i2/p44
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024