Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2024, Volume 58, Issue 4, Pages 20–31
DOI: https://doi.org/10.4213/faa4212
(Mi faa4212)
 

On the diffusion mechanism in Hamiltonian systems

Valery Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: The diffusion mechanism in Hamiltonian systems, close to completely integrable, is usually connected with the existence of the so-called “transition chains”. In this case slow diffusion occurs in a neighborhood of intersecting separatrices of hyperbolic periodic solutions (or, more generally, lower-dimensional invariant tori) of the perturbed system. In this note we discuss another diffusion mechanism that uses destruction of invariant tori of the unperturbed system with an almost resonant set of frequencies. We demonstrate this mechanism on a particular isoenergetically nondegenerate Hamiltonian system with three degrees of freedom. The same phenomenon also occurs for general higher-dimensional Hamiltonian systems. Drift of slow variables is shown using analysis of integrals of quasi-periodic functions of the time variable (possibly unbounded) with zero mean value. In addition, the proof uses the conditions of topological transitivity for cylindrical cascades.
Keywords: the fundamental problem of dynamics, KAM-theory, Kolmogorov tori, transition chains, diffusion, conditionally periodic functions, cylindrical cascades, Aubry–Mather set, skewed tori.
Received: 04.03.2024
Revised: 16.05.2024
Accepted: 28.05.2024
English version:
Functional Analysis and Its Applications, 2024, Volume 58, Issue 4, Pages 362–370
DOI: https://doi.org/10.1134/S0016266324040026
Document Type: Article
MSC: 37J40, 70H08
Language: Russian
Citation: Valery Kozlov, “On the diffusion mechanism in Hamiltonian systems”, Funktsional. Anal. i Prilozhen., 58:4 (2024), 20–31; Funct. Anal. Appl., 58:4 (2024), 362–370
Citation in format AMSBIB
\Bibitem{Koz24}
\by Valery Kozlov
\paper On the diffusion mechanism in Hamiltonian systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2024
\vol 58
\issue 4
\pages 20--31
\mathnet{http://mi.mathnet.ru/faa4212}
\crossref{https://doi.org/10.4213/faa4212}
\transl
\jour Funct. Anal. Appl.
\yr 2024
\vol 58
\issue 4
\pages 362--370
\crossref{https://doi.org/10.1134/S0016266324040026}
Linking options:
  • https://www.mathnet.ru/eng/faa4212
  • https://doi.org/10.4213/faa4212
  • https://www.mathnet.ru/eng/faa/v58/i4/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :2
    Russian version HTML:6
    References:20
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024