Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2024, Volume 58, Issue 4, Pages 20–31
DOI: https://doi.org/10.4213/faa4212
(Mi faa4212)
 

On a mechanism of diffusion in Hamiltonian systems

V. V. Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: The mechanism of diffusion in Hamiltonian systems close to completely integrable is usually associated with the existence of so-called “transition chains”: slow diffusion takes place in a neighborhood of intersecting separatrices of hyperbolic periodic solutions (or, more generally, low-dimensional invariant tori) of the perturbed problem. In the paper we discuss another diffusion mechanism which is based on the destruction of almost resonant invariant tori of an unperturbed system. This mechanism is illustrated by the example of an isoenergically non-degenerate Hamiltonian system with three degrees of freedom. However, similar behaviour can take place in general multidimensional Hamiltonian systems. The proof of the presence of drift of slow variables is based on the analysis of integrals of quasiperiodic functions of time with zero mean value (these integrals can be unlimited), and also uses the conditions of topological transitivity of cylindrical cascades.
Keywords: The main problem of dynamics, KAM theory, Kolmogorov tori, transition chains, diffusion, quasiperiodic functions, Aubry-Mather set, skew tori.
Received: 04.03.2024
Revised: 16.05.2024
Accepted: 28.05.2024
Document Type: Article
MSC: 37J40, 70H08
Language: Russian
Citation: V. V. Kozlov, “On a mechanism of diffusion in Hamiltonian systems”, Funktsional. Anal. i Prilozhen., 58:4 (2024), 20–31
Citation in format AMSBIB
\Bibitem{Koz24}
\by V.~V.~Kozlov
\paper On a mechanism of diffusion in Hamiltonian systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2024
\vol 58
\issue 4
\pages 20--31
\mathnet{http://mi.mathnet.ru/faa4212}
\crossref{https://doi.org/10.4213/faa4212}
Linking options:
  • https://www.mathnet.ru/eng/faa4212
  • https://doi.org/10.4213/faa4212
  • https://www.mathnet.ru/eng/faa/v58/i4/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :1
    Russian version HTML:2
    References:13
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024