Abstract:
The diffusion mechanism in Hamiltonian systems, close to completely integrable, is usually connected with the existence of the so-called “transition chains”. In this case slow diffusion occurs in a neighborhood of intersecting separatrices of hyperbolic periodic solutions (or, more generally, lower-dimensional invariant tori) of the perturbed system. In this note we discuss another diffusion mechanism that uses destruction of invariant tori of the unperturbed system with an almost resonant set of frequencies. We demonstrate this mechanism on a particular isoenergetically nondegenerate Hamiltonian system with three degrees of freedom. The same phenomenon also occurs for general higher-dimensional Hamiltonian systems. Drift of slow variables is shown using analysis of integrals of quasi-periodic functions of the time variable (possibly unbounded) with zero mean value. In addition, the proof uses the conditions of topological transitivity for cylindrical cascades.
Keywords:the fundamental problem of dynamics, KAM-theory, Kolmogorov tori, transition chains, diffusion, conditionally periodic functions, cylindrical cascades, Aubry–Mather set, skewed tori.