Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2024, Volume 58, Issue 3, Pages 17–30
DOI: https://doi.org/10.4213/faa4208
(Mi faa4208)
 

Flat hypercomplex nilmanifolds are $\mathbb H$-solvable

Yu. A. Gorginyanab

a Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
b Laboratory of Algebraic Geometry and its Applications, National Research University "Higher School of Economics" (HSE), Moscow, Russia
References:
Abstract: Let $\mathbb H$ be a quaternion algebra generated by $I,J$ and $K$. We say that a hypercomplex nilpotent Lie algebra $\mathfrak g$ is $\mathbb H$-solvable if there exists a sequence of $\mathbb H$-invariant subalgebras containing $\mathfrak g_{i+1}=[\mathfrak g_i,\mathfrak g_i]$,
$$ \mathfrak g=\mathfrak g_0\supset\mathfrak g_1^{\mathbb H}\supset\mathfrak g_2^{\mathbb H}\supset\cdots\supset\mathfrak g_{k-1}^{\mathbb H}\supset\mathfrak g_k^{\mathbb H}=0, $$
such that $[\mathfrak g_i^{\mathbb H},\mathfrak g_i^{\mathbb H}]\subset\mathfrak g^{\mathbb H}_{i+1}$ and $\mathfrak g_{i+1}^{\mathbb H}=\mathbb H[\mathfrak g_i^{\mathbb H},\mathfrak g_i^{\mathbb H}] $. Let $N=\Gamma\setminus G$ be a hypercomplex nilmanifold with the flat Obata connection and $\mathfrak g=\operatorname{Lie}(G)$. We prove that the Lie algebra $\mathfrak g$ is $\mathbb H$-solvable.
Keywords: nilmanifold, hypercomplex nilmanifold, Obata connection, flat Obata connection.
Funding agency Grant number
HSE Basic Research Program
The study has been funded within the framework of the HSE University Basic Research Program.
Received: 20.02.2024
Revised: 06.05.2024
Accepted: 07.05.2024
English version:
Functional Analysis and Its Applications, 2024, Volume 58, Issue 3, Pages 240–250
DOI: https://doi.org/10.1134/S001626632403002X
Document Type: Article
Language: Russian
Citation: Yu. A. Gorginyan, “Flat hypercomplex nilmanifolds are $\mathbb H$-solvable”, Funktsional. Anal. i Prilozhen., 58:3 (2024), 17–30; Funct. Anal. Appl., 58:3 (2024), 240–250
Citation in format AMSBIB
\Bibitem{Gor24}
\by Yu.~A.~Gorginyan
\paper Flat hypercomplex nilmanifolds are $\mathbb H$-solvable
\jour Funktsional. Anal. i Prilozhen.
\yr 2024
\vol 58
\issue 3
\pages 17--30
\mathnet{http://mi.mathnet.ru/faa4208}
\crossref{https://doi.org/10.4213/faa4208}
\transl
\jour Funct. Anal. Appl.
\yr 2024
\vol 58
\issue 3
\pages 240--250
\crossref{https://doi.org/10.1134/S001626632403002X}
Linking options:
  • https://www.mathnet.ru/eng/faa4208
  • https://doi.org/10.4213/faa4208
  • https://www.mathnet.ru/eng/faa/v58/i3/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:67
    Full-text PDF :3
    Russian version HTML:6
    References:13
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024