Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2024, Volume 58, Issue 4, Pages 84–108
DOI: https://doi.org/10.4213/faa4195
(Mi faa4195)
 

Grothendieck's theorem on the precompactness of subsets of functional spaces over pseudocompact spaces

Evgenii Reznichenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
References:
Abstract: Generalizations of the theorems of Eberlein and Grothendieck on the precompactness of subsets of function spaces are considered: if $X$ is a countably compact space and $C_p(X)$ is a space of continuous functions on $X$ in the topology of pointwise convergence, then any countably compact subspace of the space $C_p(X)$ is precompact, that is, it has a compact closure. The paper provides an overview of the results on this topic. It is proved that if a pseudocompact $X$ contains a dense Lindelöf $\Sigma$-space, then pseudocompact subspaces of the space $C_p(X)$ are precompact. If $X$ is the product Čech complete spaces, then bounded subsets of the space $C_p(X)$ are precompact. Results on the continuity of separately continuous functions are also obtained.
Keywords: Grothendieck–Eberlein theorem, separate continuous functions, pseudocompact spaces, precompact subspaces of function spaces.
Received: 18.12.2023
Revised: 20.01.2024
Accepted: 22.01.2024
English version:
Functional Analysis and Its Applications, 2024, Volume 58, Issue 4, Pages 409–426
DOI: https://doi.org/10.1134/S0016266324040051
Document Type: Article
Language: Russian
Citation: Evgenii Reznichenko, “Grothendieck's theorem on the precompactness of subsets of functional spaces over pseudocompact spaces”, Funktsional. Anal. i Prilozhen., 58:4 (2024), 84–108; Funct. Anal. Appl., 58:4 (2024), 409–426
Citation in format AMSBIB
\Bibitem{Rez24}
\by Evgenii Reznichenko
\paper Grothendieck's theorem on the precompactness of~subsets of~functional spaces over pseudocompact spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2024
\vol 58
\issue 4
\pages 84--108
\mathnet{http://mi.mathnet.ru/faa4195}
\crossref{https://doi.org/10.4213/faa4195}
\transl
\jour Funct. Anal. Appl.
\yr 2024
\vol 58
\issue 4
\pages 409--426
\crossref{https://doi.org/10.1134/S0016266324040051}
Linking options:
  • https://www.mathnet.ru/eng/faa4195
  • https://doi.org/10.4213/faa4195
  • https://www.mathnet.ru/eng/faa/v58/i4/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :3
    Russian version HTML:11
    References:16
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024