Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2024, Volume 58, Issue 1, Pages 104–116
DOI: https://doi.org/10.4213/faa4186
(Mi faa4186)
 

Combinatorial results implied by many zero divisors in a group ring

Fedor Petrovab

a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: In a paper of Croot, Lev and Pach and a later paper of Ellenberg and Gijswijt, it was proved that for a group $G=G_0^n$, where $G_0\ne \{1,-1\}^m$ is a fixed finite Abelian group and $n$ is large, any subset $A\subset G$ without 3-progressions (triples $x$, $y$, $z$ of different elements with $xy=z^2$) contains at most $|G|^{1-c}$ elements, where $c>0$ is a constant depending only on $G_0$. This is known to be false when $G$ is, say, a large cyclic group. The aim of this note is to show that the algebraic property corresponding to this difference is the following: in the first case, a group algebra $\mathbb{F}[G]$ over a suitable field $\mathbb{F}$ contains a subspace $X$ with codimension at most $|X|^{1-c}$ such that $X^3=0$. We discuss which bounds are obtained for finite Abelian $p$-groups and for some matrix $p$-groups: the Heisenberg group over $\mathbb{F}_p$ and the unitriangular group over $\mathbb{F}_p$. We also show how the method allows us to generalize the results of [14] and [12].
Keywords: group ring, zero divisors, arithmtic progressions, $p$-groups.
Funding agency Grant number
Russian Science Foundation 22-11-00131
Supported by Russian Science Foundation grant no. 22-11-00131, https://rscf.ru/en/project/22-11-00131/.
Received: 13.12.2023
Revised: 13.12.2023
Accepted: 16.12.2023
English version:
Functional Analysis and Its Applications, 2024, Volume 58, Issue 1, Pages 80–89
DOI: https://doi.org/10.1134/S0016266324010076
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Fedor Petrov, “Combinatorial results implied by many zero divisors in a group ring”, Funktsional. Anal. i Prilozhen., 58:1 (2024), 104–116; Funct. Anal. Appl., 58:1 (2024), 80–89
Citation in format AMSBIB
\Bibitem{Pet24}
\by Fedor Petrov
\paper Combinatorial results implied by many zero divisors in a group ring
\jour Funktsional. Anal. i Prilozhen.
\yr 2024
\vol 58
\issue 1
\pages 104--116
\mathnet{http://mi.mathnet.ru/faa4186}
\crossref{https://doi.org/10.4213/faa4186}
\transl
\jour Funct. Anal. Appl.
\yr 2024
\vol 58
\issue 1
\pages 80--89
\crossref{https://doi.org/10.1134/S0016266324010076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85193491488}
Linking options:
  • https://www.mathnet.ru/eng/faa4186
  • https://doi.org/10.4213/faa4186
  • https://www.mathnet.ru/eng/faa/v58/i1/p104
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025