Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2024, Volume 58, Issue 4, Pages 109–121
DOI: https://doi.org/10.4213/faa4182
(Mi faa4182)
 

An algebraic version of the Poincare construction

Maria Stepanova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
References:
Abstract: The Poincare construction in CR geometry allows us to estimate the dimension of the stabilizer in the Lie algebra of infinitesimal holomorphic automorphisms of the germ of a CR manifold by the dimension of the stabilizer in the corresponding algebra of the model surface of this germ. We give a negative answer to the following natural question: is there an algebraic Poincare construction, i.e., is it true that the stabilizer in the Lie algebra of automorphisms of the germ of a CR manifold is isomorphic to a Lie subalgebra of the stabilizer in the algebra of its model surface? We also give a negative answer to the corresponding question for the whole automorphisms algebra..
Keywords: CR manifold, automorphisms, Bloom–Graham type.
Funding agency Grant number
Russian Science Foundation 23-21-00109
Contest «Young Russian Mathematics»
This work was supported by the Russian Science Foundation under grant № 23-21-00109, https://rscf.ru/en/project/23-21-00109/. The author is a winner of the BASIS foundation award “Young Russia Mathematics”.
Received: 25.11.2023
Revised: 13.02.2024
Accepted: 23.03.2024
English version:
Functional Analysis and Its Applications, 2024, Volume 58, Issue 4, Pages 427–437
DOI: https://doi.org/10.1134/S0016266324040063
Document Type: Article
MSC: 32V40
Language: Russian
Citation: Maria Stepanova, “An algebraic version of the Poincare construction”, Funktsional. Anal. i Prilozhen., 58:4 (2024), 109–121; Funct. Anal. Appl., 58:4 (2024), 427–437
Citation in format AMSBIB
\Bibitem{Ste24}
\by Maria Stepanova
\paper An algebraic version of the Poincare construction
\jour Funktsional. Anal. i Prilozhen.
\yr 2024
\vol 58
\issue 4
\pages 109--121
\mathnet{http://mi.mathnet.ru/faa4182}
\crossref{https://doi.org/10.4213/faa4182}
\transl
\jour Funct. Anal. Appl.
\yr 2024
\vol 58
\issue 4
\pages 427--437
\crossref{https://doi.org/10.1134/S0016266324040063}
Linking options:
  • https://www.mathnet.ru/eng/faa4182
  • https://doi.org/10.4213/faa4182
  • https://www.mathnet.ru/eng/faa/v58/i4/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :4
    Russian version HTML:6
    References:13
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024