Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2024, Volume 58, Issue 4, Pages 142–147
DOI: https://doi.org/10.4213/faa4178
(Mi faa4178)
 

Brief communications

On the differential operators of odd order with $\mathrm{PT}$-symmetric periodic matrix coefficients

Oktay Veliev

Dogus University, Department of Mechanical Engineering, Istanbul, Turkey
References:
Abstract: In this paper, we investigate the spectrum of the differential operator $T$ generated by an ordinary differential expression of order $n$ with $\mathrm{PT}$-symmertic periodic $m\times m$ matrix coefficients. We prove that if $m$ and $n$ are odd numbers, then the spectrum of $T$ contains all the real line. Note that in standard quantum theory, observable systems must be Hermitian operators, so as to ensure that the spectrum is real. Research on $\mathrm{PT}$-symmetric quantum theory is based on the observation that the spectrum of a $\mathrm{PT}$-symmetric non-self-adjoint operator can contain real numbers. In this paper, we discover a large class of $\mathrm{PT}$-symmetric operators whose spectrum contains all real axes. Moreover, the proof is very short.
Keywords: differential operator, $\mathrm{PT}$-symmetric coefficients, real spectrum.
Received: 20.11.2023
Revised: 05.02.2024
Accepted: 12.02.2024
English version:
Functional Analysis and Its Applications, 2024, Volume 58, Issue 4, Pages 454–457
DOI: https://doi.org/10.1134/S0016266324040099
Document Type: Article
MSC: 34L05, 34L20
Language: Russian
Citation: Oktay Veliev, “On the differential operators of odd order with $\mathrm{PT}$-symmetric periodic matrix coefficients”, Funktsional. Anal. i Prilozhen., 58:4 (2024), 142–147; Funct. Anal. Appl., 58:4 (2024), 454–457
Citation in format AMSBIB
\Bibitem{Vel24}
\by Oktay Veliev
\paper On the differential operators of odd order with~$\mathrm{PT}$-symmetric~periodic matrix coefficients
\jour Funktsional. Anal. i Prilozhen.
\yr 2024
\vol 58
\issue 4
\pages 142--147
\mathnet{http://mi.mathnet.ru/faa4178}
\crossref{https://doi.org/10.4213/faa4178}
\transl
\jour Funct. Anal. Appl.
\yr 2024
\vol 58
\issue 4
\pages 454--457
\crossref{https://doi.org/10.1134/S0016266324040099}
Linking options:
  • https://www.mathnet.ru/eng/faa4178
  • https://doi.org/10.4213/faa4178
  • https://www.mathnet.ru/eng/faa/v58/i4/p142
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :1
    Russian version HTML:2
    References:16
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024