Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2023, Volume 57, Issue 4, Pages 17–26
DOI: https://doi.org/10.4213/faa4153
(Mi faa4153)
 

This article is cited in 2 scientific papers (total in 2 papers)

The mumford dynamical system and the Gelfand–Dikii recursion

P. G. Baron

University of Chicago
Full-text PDF (497 kB) Citations (2)
References:
Abstract: In his paper “The Mumford dynamical system and hyperelliptic Kleinian functions” [Funkts. Anal. Prilozhen. 57 (4), 27–45 (2023)] Victor Buchstaber developed the differential-algebraic theory of the Mumford dynamical system. The key object of this theory is the (P,Q)-recursion introduced in his paper.
In the present paper, we further develop the theory of the (P,Q)-recursion and describe its connections to the Korteweg–de Vries hierarchy, the Lenard operator, and the Gelfand–Dikii recursion.
Keywords: Korteweg–de Vries (KdV) equation, parametric KdV hierarchy, Gelfand–Dikii hierarchy, Lenard operator, polynomial dynamical systems, polynomial integrals, differential polynomials.
Received: 12.09.2023
Revised: 12.09.2023
Accepted: 25.09.2023
English version:
Functional Analysis and Its Applications, 2023, Volume 57, Issue 4, Pages 279–287
DOI: https://doi.org/10.1134/S0016266323040020
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. G. Baron, “The mumford dynamical system and the Gelfand–Dikii recursion”, Funktsional. Anal. i Prilozhen., 57:4 (2023), 17–26; Funct. Anal. Appl., 57:4 (2023), 279–287
Citation in format AMSBIB
\Bibitem{Bar23}
\by P.~G.~Baron
\paper The mumford dynamical system and the Gelfand--Dikii recursion
\jour Funktsional. Anal. i Prilozhen.
\yr 2023
\vol 57
\issue 4
\pages 17--26
\mathnet{http://mi.mathnet.ru/faa4153}
\crossref{https://doi.org/10.4213/faa4153}
\transl
\jour Funct. Anal. Appl.
\yr 2023
\vol 57
\issue 4
\pages 279--287
\crossref{https://doi.org/10.1134/S0016266323040020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185870588}
Linking options:
  • https://www.mathnet.ru/eng/faa4153
  • https://doi.org/10.4213/faa4153
  • https://www.mathnet.ru/eng/faa/v57/i4/p17
  • This publication is cited in the following 2 articles:
    1. V. M. Buchstaber, E. Yu. Bunkova, “Polynomial dynamical systems associated with the KdV hierarchy”, Part. Differ. Equ. in Appl. Math., 12 (2024), 100928–6  mathnet  crossref
    2. V. M. Buchstaber, “The Mumford dynamical system and hyperelliptic Kleinian functions”, Funct. Anal. Appl., 57:4 (2023), 288–302  mathnet  crossref  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :19
    References:37
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025