Abstract:
In his paper “The Mumford dynamical system and hyperelliptic Kleinian
functions”
[Funkts. Anal. Prilozhen. 57 (4), 27–45 (2023)]
Victor Buchstaber developed the differential-algebraic theory of
the Mumford dynamical system.
The key object of this theory is the (P,Q)-recursion introduced in his paper.
In the present paper, we further develop the theory of the (P,Q)-recursion and describe
its connections to the Korteweg–de Vries hierarchy, the
Lenard operator, and the Gelfand–Dikii recursion.
Citation:
P. G. Baron, “The mumford dynamical system and the Gelfand–Dikii recursion”, Funktsional. Anal. i Prilozhen., 57:4 (2023), 17–26; Funct. Anal. Appl., 57:4 (2023), 279–287
\Bibitem{Bar23}
\by P.~G.~Baron
\paper The mumford dynamical system and the Gelfand--Dikii recursion
\jour Funktsional. Anal. i Prilozhen.
\yr 2023
\vol 57
\issue 4
\pages 17--26
\mathnet{http://mi.mathnet.ru/faa4153}
\crossref{https://doi.org/10.4213/faa4153}
\transl
\jour Funct. Anal. Appl.
\yr 2023
\vol 57
\issue 4
\pages 279--287
\crossref{https://doi.org/10.1134/S0016266323040020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185870588}
Linking options:
https://www.mathnet.ru/eng/faa4153
https://doi.org/10.4213/faa4153
https://www.mathnet.ru/eng/faa/v57/i4/p17
This publication is cited in the following 2 articles:
V. M. Buchstaber, E. Yu. Bunkova, “Polynomial dynamical systems associated with the KdV hierarchy”, Part. Differ. Equ. in Appl. Math., 12 (2024), 100928–6
V. M. Buchstaber, “The Mumford dynamical system and hyperelliptic Kleinian functions”, Funct. Anal. Appl., 57:4 (2023), 288–302