|
Spectral analysis of a dynamical system describing the diffusion of neutrons
S. A. Stepin Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
The spectral properties of the generator of an evolution semigroup describing the dynamics of particle transport
in a substance are studied. An effective estimate of the number of unstable modes is obtained, and
geometric conditions for spectral stability and instability are found.
Keywords:
linearized Boltzmann equation, evolution semigroup generator, spectrum, Birman– Schwinger principle, instability
index.
Received: 07.02.2023 Revised: 07.02.2023 Accepted: 21.02.2023
Citation:
S. A. Stepin, “Spectral analysis of a dynamical system describing the diffusion of neutrons”, Funktsional. Anal. i Prilozhen., 57:2 (2023), 75–92; Funct. Anal. Appl., 57:2 (2023), 143–157
Linking options:
https://www.mathnet.ru/eng/faa4094https://doi.org/10.4213/faa4094 https://www.mathnet.ru/eng/faa/v57/i2/p75
|
Statistics & downloads: |
Abstract page: | 172 | Full-text PDF : | 35 | References: | 26 | First page: | 19 |
|