Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2023, Volume 57, Issue 2, Pages 111–116
DOI: https://doi.org/10.4213/faa4085
(Mi faa4085)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

On the Birman problem in the theory of nonnegative symmetric operators with compact inverse

M. M. Malamudab

a Peoples Friendship University of Russia
b Saint Petersburg State University
Full-text PDF (513 kB) Citations (1)
References:
Abstract: Large classes of nonnegative Schrödinger operators on $\Bbb R^2$ and $\Bbb R^3$ with the following properties are described:
1. The restriction of each of these operators to an appropriate unbounded set of measure zero in $\Bbb R^2$ (in $\Bbb R^3$) is a nonnegative symmetric operator (the operator of a Dirichlet problem) with compact preresolvent;
2. Under certain additional assumptions on the potential, the Friedrichs extension of such a restriction has continuous (sometimes absolutely continuous) spectrum filling the positive semiaxis.
The obtained results give a solution of a problem by M. S. Birman.
Keywords: Schrödinger operator, symmetric nonnegative operator, compact preresolvent, Friedrichs extension, continuous spectrum.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2021-602
Received: 15.01.2023
Revised: 12.03.2023
Accepted: 18.03.2023
English version:
Functional Analysis and Its Applications, 2023, Volume 57, Issue 2, Pages 173–177
DOI: https://doi.org/10.1134/S0016266323020090
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. M. Malamud, “On the Birman problem in the theory of nonnegative symmetric operators with compact inverse”, Funktsional. Anal. i Prilozhen., 57:2 (2023), 111–116; Funct. Anal. Appl., 57:2 (2023), 173–177
Citation in format AMSBIB
\Bibitem{Mal23}
\by M.~M.~Malamud
\paper On the Birman problem in the theory of nonnegative symmetric operators with compact inverse
\jour Funktsional. Anal. i Prilozhen.
\yr 2023
\vol 57
\issue 2
\pages 111--116
\mathnet{http://mi.mathnet.ru/faa4085}
\crossref{https://doi.org/10.4213/faa4085}
\transl
\jour Funct. Anal. Appl.
\yr 2023
\vol 57
\issue 2
\pages 173--177
\crossref{https://doi.org/10.1134/S0016266323020090}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180881032}
Linking options:
  • https://www.mathnet.ru/eng/faa4085
  • https://doi.org/10.4213/faa4085
  • https://www.mathnet.ru/eng/faa/v57/i2/p111
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :23
    References:35
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024