|
Multipliers for the Calderón construction
E. I. Berezhnoi P. G. Demidov Yaroslavl State University, Faculty of Mathematics
Abstract:
On the basis of a new approach to the Calderón construction $X_0^{\theta} X_1^{1-\theta}$ for
ideal spaces $X_0$ and $X_1$ and a parameter $\theta \in [0,1]$, final results concerning a
description of multipliers spaces are obtained. In particular, it is shown that
if ideal spaces $X_0$ and $X_1$ have the Fatou property, then
$M(X_0^{\theta_0} X_1^{1-\theta_0}\,{\to}\,X_0^{\theta_1} X_1^{1-\theta_1}) =
M(X_1^{\theta_1 - \theta_0} \to X_0^{\theta_1 -\theta_0})$ for $0 <\theta_0 <\theta_1 <1$.
Due to the absence of constraints on the ideal spaces $X_0$ and $X_1$, the
obtained results apply to a large class of ideal spaces.
Keywords:
ideal Banach space, Calderón construction, pointwise multiplier, local Morrey space.
Received: 02.10.2022 Revised: 07.02.2023 Accepted: 10.02.2023
Citation:
E. I. Berezhnoi, “Multipliers for the Calderón construction”, Funktsional. Anal. i Prilozhen., 57:2 (2023), 3–17; Funct. Anal. Appl., 57:2 (2023), 87–98
Linking options:
https://www.mathnet.ru/eng/faa4056https://doi.org/10.4213/faa4056 https://www.mathnet.ru/eng/faa/v57/i2/p3
|
Statistics & downloads: |
Abstract page: | 178 | Full-text PDF : | 25 | References: | 36 | First page: | 14 |
|